
1

Windows Operating System Internals - by David A. Solomon and Mark E. Russinovich with Andreas Polze

Unit OS5: Memory Management

5.3. Windows Memory Management Operation

Windows Operating System Internals - by David A. Solomon and Mark E. Russinovich with Andreas Polze 2

Copyright Notice
© 2000-2005 David A. Solomon and Mark Russinovich

These materials are part of the Windows Operating
System Internals Curriculum Development Kit,
developed by David A. Solomon and Mark E.
Russinovich with Andreas Polze

Microsoft has licensed these materials from David
Solomon Expert Seminars, Inc. for distribution to
academic organizations solely for use in academic
environments (and not for commercial use)

2

Windows Operating System Internals - by David A. Solomon and Mark E. Russinovich with Andreas Polze 3

Roadmap for Section 5.3.

From virtual to physical addresses

Address space layout

Address translation

Page directories, page tables

Page faults, invalid page table entries

Page frame number database

Recap: structuring of the memory manager

Virtual Memory - Concepts

Application always references “virtual
addresses”
Hardware and software translates, or maps,
virtual addresses to physical

Not all of an application’s virtual address space
is in physical memory at one time...

...But hardware and software fool the application
into thinking that it is

The rest is kept on disk, and is brought into physical
memory automatically as needed

3

Mapping Virtual
to Physical Pages

uSuccessive page table entries
describe successive virtual pages,
pointing to “scattered” (i.e. not
physically contiguous) physical pages

virtual
pages

page
table
entries

00000000

7FFFFFFF

C0000000

C1000000

80000000

FFFFFFFF

Physical Memory

Windows Operating System Internals - by David A. Solomon and Mark E. Russinovich with Andreas Polze 6

Address Translation - Mapping
virtual addresses to physical
memory

Mapping via page table entries

Indirect relationship between virtual
pages and physical memory

Virtual
pages

Physical memory

Page table
entries

10 10 12

2231 21 11 012

Page directory
index

Page table
index

Byte index

x86:

user

system

user

system

4

Shared and Private Pages

00000000

7FFFFFFF

C0000000

C1000000

80000000

FFFFFFFF

For shared pages, multiple
processes’ PTEs point to
same physical pages

Process A Process B

Physical
Memory

Windows Operating System Internals - by David A. Solomon and Mark E. Russinovich with Andreas Polze 8

Windows 2000 x86 System
Space Layout

80000000
System code (NTOSKRNL, HAL, boot
drivers); initial nonpaged pool

A0000000 System Mapped Views (e.g. WIN32K.SYS)
or session space (Terminal Server only)

A4000000 Additional System PTEs (& big cache)
C0000000 Process Page Tables and Page Directory
C0400000 Hyperspace and process working set list

System CacheC1000000
Paged Pool

EB000000 (min)
Non-Paged Pool expansion

FFBE0000

C0800000
System Working Set ListC0C00000

Unused No Access

E1000000
System PTEs

Crash dump information
FFC00000 HAL usage

5

Windows Operating System Internals - by David A. Solomon and Mark E. Russinovich with Andreas Polze 9

64-Bit Address Space Layout
(Itanium)

User-Mode per-process

Kernel-Mode per-process

1FFFFF0000000000 Process Page Tables

Session Space

Session Space Page Tables

System Space

6FC00000000-7FFFFFFFFFF

2000000000000000

3FFFFF0000000000

E000000000000000
-E000060000000000

FFFFFF0000000000 System Space Page Tables

0

Windows Operating System Internals - by David A. Solomon and Mark E. Russinovich with Andreas Polze 10

Address Translation
Hardware Support Intel x86

Intel x86 provides two levels of address translation

Segmentation (mandatory, since 8086)

Paging (optional, since 80386)

Segmentation: first level of address translation

Intel: logical address (selector:offset) to linear address (32 bits)

NT virtual address is Intel linear address (32 bits)

Paging: second level of address translation

Intel: linear address (32 bits) to physical address

NT: virtual address (32 bits) to physical address

Physical address: 32 bits (4 GB) all NT versions, 36 bits (64 GB) PAE

Page size:

4 kb since 80386 (all NT versions)

4 MB since Pentium Pro (supported in NT 4, Windows 2000)

6

Windows Operating System Internals - by David A. Solomon and Mark E. Russinovich with Andreas Polze 11

Intel x86 Segmentation

Index TI=0 RPL

315 2 1 0Intel
Logical
address

Segment Selector
31 0

Offset

:

Global Descriptor
Table (GDT)

Limit=0xfffffAccess

Base Address = 0

Limit=0xfffffAccess

Base Address = 0
+

Intel
Linear
Addresses

NT Virtual
Addresses 0

0xffffffff

Windows Operating System Internals - by David A. Solomon and Mark E. Russinovich with Andreas Polze 12

Intel x86 Paging – Address
Translation

10 10 12

2231 21 11 0
Intel Linear
Address 12

4Mb PDE

4Kb PDE

NT Virtual
Address

Page directory
1024x4byte entries
(one per process)

cr 3

Physical address

PTE

Page table
1024 entries

Physical Address

operand

4 Kb page

operand

4 Mb page

22 bit
offset

4kb page
frame

4MB page frame

Physical Memory

0

1

2

3

n

Page Frame
Number Database

NT-PFN
Database

Page tables are created on demand

7

Interpreting a Virtual Address

31 22 21 12 11 0

10 bits 10 bits 12 bits

Page table
selector

Page table
entry selector

Byte within page

47 39 38 30 29 21 20 12 11 0

9 bits 9 bits 12 bits

Page table
selector

Page table
entry selector

Byte within page

x86 32-bit

x64 64-bit (48-bit in today’s processors)

Page directory
pointer selector

Page map level
4 selector

9 bits9 bits

Windows Operating System Internals - by David A. Solomon and Mark E. Russinovich with Andreas Polze 14

Windows Virtual Memory Use
Performance Counters

Ratio of committed bytes to
commit limit

MmTotalCommittedPages
/ MmTotalCommitLimit

Memory: %Commited
Bytes in Use

Amount of memory (in bytes) that
can be committed without
increasing size of paging file

MmTotalCommit-LimitMemory: Commit
Limit

Amount of committed private
address space that has a backing
store

MmTotalCommitedPagesMemory: Committed
Bytes

DescriptionSystem VariablePerformance Counter

8

x86 Virtual Address Translation

Page table
selector

Page table
entry selector Byte within page

index

Page Directory
(one per process, 1024 entries)

index

Page Tables
(up to 512 per process,

plus up to 512 system-wide)

physical
page number
(“page frame
number” or

“PFN”)

Physical Pages
(up to 2^20)

1

CR3
physical
address

2

3

4

5

6

7

8

9

10

11

12

PFN 0

31 0

x64 Virtual Address Translation

Page table
selector

Page table
entry selector

Page Map
Level 4

Page
Tables

Physical Pages
(up to 2^40)

1

2

3

4

5

6

7

8

9

10

11

12

PFN 0

Byte within page
Page dir
pointer

Page map
Level 4

Page
Directories

Page
Directory
Pointers

CR3

48 0

9

Byte within pageVirtual page number

Virtual Address Translation

The hardware converts each valid virtual
address to a physical address

Physical page number Byte within page

Page
Directory

Page
Tables

virtual address

physical address

Translation
Lookaside

Buffer

a cache of recently-
used page table entries

Address translation (hardware)

if page
not valid...

page fault
(exception,
handled by
software)

Windows Operating System Internals - by David A. Solomon and Mark E. Russinovich with Andreas Polze 18

Itanium Address Translation

3 level page table (vs 2 on x86)

43 bit virtual addressing

44 bit physical addressing

Two TLBs

Instruction TLB – translates instruction addresses

Data TLB – translates data addresses

Each have OS-managed translation registers and hardware
managed translation cache

OS can insert TLB entries
OS decides which slots when inserting into translation registers

Hardware decides when inserting into translation cache

Itanium: 96 instruction translation cache entries; 128 data translation
cache entries

10

Mapping Process vs. System-
Space Addresses

“Upper half” of page directory for
every process contains same entries
(with a few exceptions), which point
to system-wide page tables

exceptions are for page tables that
map the process page tables (not
shown)

Page Directories
(one per process)

Sets of per-process
page tables (up to 512

per process)

System-wide page tables
(up to 512 persystem)

Windows Operating System Internals - by David A. Solomon and Mark E. Russinovich with Andreas Polze 20

Itanium Address Translation

Address space
divided into 8
regions

11

Windows Operating System Internals - by David A. Solomon and Mark E. Russinovich with Andreas Polze 21

Itanium Address Translation

Page Directory and Page Table
Entries

Screen snapshot from:
Kernel debugger !pte command on
randomly -selected virtual addresses

KDx86> !pte fea80000
FEA80000 - PDE at C0300FE8 PTE at C03FAA00

contains 0040C063 contains 0002D063
pfn 0040C DA--KWV pfn 0002D DA--KWV

KDx86> !pte 10000
00010000 - PDE at C0300000 PTE at C0000040

contains 002AF067 contains FFFFF480
pfn 002AF DA--UWV not valid

Proto: VAD
Protect: 4

KDx86> !pte 50000
00050000 - PDE at C0300000 PTE at C0000140

contains 002AF067 contains 0011A080
pfn 002AF DA--UWV not valid

PageFile 0
Offset 11a
Protect: 4

1

3
2

98764 5

A

A

virtual address of PD
Entry or PT Entry

contents of PDE or PTE
interpreted contents
Page Frame Number

(== physical page
number) of Page
Table

Page Frame Number
(== physical page
number) for valid
page

D = Dirty (modified
since made valid)

A = Accessed (recently)
KW = Kernel mode

writable
V = Valid bit
Where pager can find

contents of an invalid
page

1

3
2

4

5

6

7
8

9
A

12

Windows Operating System Internals - by David A. Solomon and Mark E. Russinovich with Andreas Polze 23

Translating a virtual address:

1. Memory management HW locates page directory for current
process (cr3 register on Intel, PDR on Alpha)

2. Page directory index directs to requested page table

3. Page table index directs to requested virtual page

4. If page is valid, PTE contains physical page number
(PFN – page frame number) of the virtual page
• Memory manager fault handler locates invalid pages and tries to

make them valid

• Access violation/bug check if page cannot be brought in (prot. fault)

5. When PTE points to valid page, byte index is used to locate
address of desired data

Windows Operating System Internals - by David A. Solomon and Mark E. Russinovich with Andreas Polze 24

Page directories & Page tables

Each process has a single page directory (phys. addr. in
KPROCESS block, at 0xC0300000, in cr3 (x86))

cr3 is re-loaded on inter-process context switches

Page directory is composed of page directory entries (PDEs)
which describe state/location of page tables for this process

Page tables are created on demand

x86: 1024 page tables describe 4GB

Each process has a private set of page tables
System has one set of page tables

System PTEs are a finite resource: computed at boot time

HKLM\System...\Control\SessionManager\SystemPages

13

Windows Operating System Internals - by David A. Solomon and Mark E. Russinovich with Andreas Polze 25

System and
process-private page tables

On process creation, system space page directory entries point to existing
system page tables
Not all processes have same view of system space (after allocation of new
page tables)

PTE 0 PDE 0

PDE 511

PDE n Sys PTE 0

Sys PTE n

PTE 0PDE 0

PDE 511

PDE nProcess 1
page tables

System
page tables

Process 1
page directory

Process 2
page directory

private

PDE 512PDE 512

Process 2
page tables

Windows Operating System Internals - by David A. Solomon and Mark E. Russinovich with Andreas Polze 26

Page Table Entries

Page tables are array of Page Table Entries (PTEs)

Valid PTEs have two fields:

Page Frame Number (PFN)
Flags describing state and protection of the page

Page frame number VU P Cw Gi L D A Cd Wt O W

Res (writable on MP Systems)
Res
Res
Global
Res (large page if PDE)
Dirty
Accessed
Cache disabled
Write through
Owner
Write (writable on MP Systems)

valid

Reserved bits
are used only
when PTE is
not valid

31 12 0

14

Windows Operating System Internals - by David A. Solomon and Mark E. Russinovich with Andreas Polze 27

PTE Status and Protection Bits
(Intel x86 only)

Uniproc: Indicates whether page is read/write or read-only;
Multiproc: ind. whether page is writeable/write bit in res . bit

Write

Disables caching of writes; immediate flush to diskWrite through

Indicates whether translation maps to page in phys. Mem.Valid

Indicates whether user-mode code can access the page of
whether the page is limited to kernel mode access

Owner

Indicates that PDE maps a 4MB page (used to map kernel)Large page

Translation applies to all processes
(a translation buffer flush won‘t affect this PTE)

Global

Page has been written toDirty

Disables caching for that pageCache disabled

Page has been readAccessed

Meaning on x86Name of Bit

Windows Operating System Internals - by David A. Solomon and Mark E. Russinovich with Andreas Polze 28

Translation Look-Aside Buffer
(TLB)

Address translation requires two lookups:

Find right table in page directory

Find right entry in page table

Most CPU cache address translations

Array of associative memory: translation look-aside buffer (TLB)
TLB: virtual-to-physical page mappings of most recently used pages

Virtual page #: 5Virtual page #: 17

Virtual page #: 64

Virtual page #: 17

Virtual page #: 7

Virtual page #: 65

Page frame 290

Invalid

Page frame 1004

Invalid

Page frame 801

Simultaneous
read and compare

15

Windows Operating System Internals - by David A. Solomon and Mark E. Russinovich with Andreas Polze 29

Page Fault Handling

Reference to invalid page is called a page fault

Kernel trap handler dispatches:

Memory manager fault handler (MmAccessFault) called

Runs in context of thread that incurred the fault

Attempts to resolve the fault or
raises exception

Page faults can be caused by variety of conditions

Four basic kinds of invalid Page Table Entries (PTEs)

Windows Operating System Internals - by David A. Solomon and Mark E. Russinovich with Andreas Polze 30

Reasons for access faults

Accessing a page that is not resident in memory but on disk in
page file/mapped file

Allocate memory and read page from disk into working set

Accessing page that is on standby or modified list

Transition the page to process or system working set

Accessing page that has no committed storage
Access violation

Accessing kernel page from user-mode

Access violation

Writing to a read-only page
Access violation

16

Windows Operating System Internals - by David A. Solomon and Mark E. Russinovich with Andreas Polze 31

Reasons for access faults (contd.)

Writing to a guard page
Guard page violation (if a reference to a user-mode stack,
perform automatic stack expansion)

Writing to a copy-on-write page
Make process-private copy of page and replace original in process or
system working set

Referencing a page in system space that is valid but not in the
process page directory

(if paged pool expanded after process directory was created)

Copy page directory entry from master system page directory structure
and dismiss exception

On a multiprocessor system: writing to valid page that has not yet
been written to

Set dirty bit in PTE

Windows Operating System Internals - by David A. Solomon and Mark E. Russinovich with Andreas Polze 32

Invalid PTEs and their structure

Page file: desired page resides in paging file
in-page operation is initiated

Page file offset Protection
Page
File No 0

Transition
Prototype
Valid31 12 11 10 9 5 4 1 0

• Demand Zero: pager looks at zero page list;
if list is empty, pager takes list from standby list and
zeros it;
PTE format as shown above, but page file number and
offset are zeros

17

Windows Operating System Internals - by David A. Solomon and Mark E. Russinovich with Andreas Polze 33

Invalid PTEs and their structure
(contd.)

Transition: the desired page is in memory on either the standby, modified,
or modified-no-write list

Page is removed from the list and added to working set

Page Frame Number Protection1

Transition
Prototype
Protection
Cache disable
Write through
Owner
Write
Valid

31 12 11 10 9 5 4 1 0

1 0

23

• Unknown: the PTE is zero, or the page table does not yet exist

- examine virtual address space descriptors (VADs) to see
whether this virtual address has been reserved

- Build page tables to represent newly committed space

Windows Operating System Internals - by David A. Solomon and Mark E. Russinovich with Andreas Polze 34

Prototype PTEs

Software structure to manage potentially shared pages

Array of prototype PTEs is created as part of section object
(part of segment structure)

First access of a page mapped to a view of a section object:
memory manager uses prototype PTE to fill in real PTE used for address translation;

Reference count for shared pages in PFN database

Shared page valid:

process & prototype PTE point to physical page

Page invalidated:

process PTE points to prototype PTE

Prototype PTE describes 5 states for shared page:

Active/valid, Transition, Demand zero, Page file, Mapped file

Layer between page table and page frame database

18

Windows Operating System Internals - by David A. Solomon and Mark E. Russinovich with Andreas Polze 35

Prototype PTEs for shared pages –
the bigger picture

Two virtual pages in a mapped view

First page is valid; 2nd page is invalid and in page file

Prototype PTE contains exact location
Process PTE points to prototype PTE

PFN Valid PFN n

Invalid - points
to prototype

PTE
Valid PFN n

Invalid – in
page file

Segment
structure

PFN n

PFN n

PTE address

Share
count=1

PFN entryPhysical
memory

Prototype page
table

Page table

Page directory

Windows Operating System Internals - by David A. Solomon and Mark E. Russinovich with Andreas Polze 36

In-Paging I/O

Occurs when read operation must be issued to a file to satisfy page fault
Page tables are pageable -> additional page faults possible

In-page I/O is synchronous

Thread waits until I/O completes

Not interruptible by asynchronous procedure calls

During in-page I/O: faulting thread does not own critical memory management
synchronization objects

Other threads in process may issue VM functions, but:
Another thread could have faulted same page: collided page fault

Page could have been deleted (remapped) from virtual address space

Protection on page may have changed

Fault could have been for prototype PTE and page that maps prototype PTE
could have been out of working set

19

Windows Operating System Internals - by David A. Solomon and Mark E. Russinovich with Andreas Polze 37

Page files

Windows supports up to 16 paging files

Once open, page file can‘t be deleted
while system is running

System process maintains open handle to each page file

NtCreatePageFile system service in NTDLL.DLL (internal only)

Page files are always created as uncompressed files

Memory management tracks page file usage:

Global: commitment

On a per-process basis: Page file quota
VM allocation will fail when commit limit has reached

Windows Operating System Internals - by David A. Solomon and Mark E. Russinovich with Andreas Polze 38

Virtual address descriptors (VADs)

Memory manager uses demand paging algorithm

Lazy evaluation is also used to construct page tables

Reserved vs. commited memory

Even for commited memory, page table are constructed on demand
Memory manager maintains VAD structures to keep track of reserved
virtual addresses

Self-balancing binary tree
VAD store:

range of addresses being reserved;

whether range will be shared or private;

Whether child process can inherit contents of the range
Page protection applied to pages within the address range

20

Windows Operating System Internals - by David A. Solomon and Mark E. Russinovich with Andreas Polze 39

Page Frame Number-Database

One entry (24 bytes) for each physical page
Describes state of each page in physical memory

Entries for active/valid and transition pages contain:

Original PTE value (to restore when paged out)

Original PTE virtual address and container PFN
Working set index hint (for the first process...)

Entries for other pages are linked in:

Free, standby, modified, zeroed, bad lists (parity error will kill kernel)

Share count (active/valid pages):
Number of PTEs which refer to that page; 1->0: candidate for free list

Reference count:

Locking for I/O: INC when share count 1->0; DEC when unlocked

Share count = 0 & reference count = 1 is possible

Reference count 1->0: page is inserted in free, standby or modified lists

Windows Operating System Internals - by David A. Solomon and Mark E. Russinovich with Andreas Polze 40

Page Frame Database –
states of pages in physical memory

Page has generated parity or other hardware errorsBad

Page is free and has been initialized by zero page threadZeroed

Page is free but has dirty data in it – cannot be given to user
process – C2 security requirement

Free

Modified page, will not be touched by modified page write, used
by NTFS for pages containing log entries (explicit flushing)

Modified
no write

Removed from working set, modified, not yet written to diskModified

Page belonged to a working set but was removed; not modifiedStandby

Page not owned by a working set, not on any paging list
I/O is in progress on this page

Transition

Page is part of working set (sys/proc), valid PTE points to itActive/valid

DescriptionStatus

21

Windows Operating System Internals - by David A. Solomon and Mark E. Russinovich with Andreas Polze 41

Page tables and page frame
database

valid

Invalid:
disk address

Invalid:
transition

valid

Invalid:
disk address

Valid
valid

Invalid:
transition

Invalid:
disk address

Prototype PTE

Process 1
page table

Process 2
page table

Process 3
page table

Active

Standby

Active

Active

Modified

Zeroed

Free

Standby

Modified

Bad

Modified
no write

Windows Operating System Internals - by David A. Solomon and Mark E. Russinovich with Andreas Polze 42

MM: Process Support

MmCreateProcessAddressSpace – 3 pages
The page directory

Points to itself

Map the page table of the hyperspace

Map system paged and nonpaged areas
Map system cache page table pages

The page table page for working set

The page for the working set list

MmInitializeProcessAddressSpace
Initialize PFN for PD and hyperspace PDEs

MiInitializeWorkingSetList

Optional: MmMapViewOfSection for image file

MmCleanProcessAddressSpace,

MmDeleteProcess AddressSpace

22

Windows Operating System Internals - by David A. Solomon and Mark E. Russinovich with Andreas Polze 43

MM: Process Swap Support

MmOutSwapProcess / MmInSwapProcess

MmCreateKernelStack

MiReserveSystemPtes for stack and no-access page

MmDeleteKernelStack

MiReleaseSystemPtes

MmGrowKernelStack

MmOutPageKernelStack

Signature (thread_id) written on top of stack before write
The page goes to transition list

MmInPageKernelStack
Check signature after stack page is read / bugcheck

Windows Operating System Internals - by David A. Solomon and Mark E. Russinovich with Andreas Polze 44

MM: Working Sets

Working Set:
The set of pages in memory at any time for a given process, or

All the pages the process can reference without incurring a page fault

Per process, private address space

WS limit: maximum amount of pages a process can own
Implemented as array of working set list entries (WSLE)

Soft vs. Hard Page Faults:

Soft page faults resolved from memory (standby/modified page lists)

Hard page faults require disk access
Working Set Dynamics:

Page replacement when WS limit is reached

NT 4.0: page replacement based on modified FIFO

Windows 2000: Least Recently Used algorithm (uniproc.)

23

Windows Operating System Internals - by David A. Solomon and Mark E. Russinovich with Andreas Polze 45

MM: Working Set Management

Modified Page Writer thread

Created at system initialization

Writing modified pages to backing file

Optimization: min. I/Os, contigous pages on disk

Generally MPW is invoked before trimming

Balance Set Manager thread

Created at system initialization

Wakes up every second

Executes MmWorkingSetManager

Trimming process WS when required: from current down to minimal WS for processes
with lowest page fault rate

Aware of the system cache working set

Process can be out -swapped if all threads have pageable kernel stack

Windows Operating System Internals - by David A. Solomon and Mark E. Russinovich with Andreas Polze 46

MM: I/O Support

I/O Support operations:

Locking/Unlocking pages in memory

Mapping/Unmapping Locked Pages into current address space

Mapping/Unmapping I/O space

Get physical address of a locked page

Probe page for access

Memory Descriptor List

Starting VAD

Size in Bytes

Array of elements to be filled with physical page numbers

Physically contiguous vs. Virtually contiguous

24

Windows Operating System Internals - by David A. Solomon and Mark E. Russinovich with Andreas Polze 47

MM: Cache Support

System wide cache memory

Region of system paged area reserved at initialization time

Initial default: 512 MB (min. 64MB if /3GB, max 960 MB)

Managed as system wide working set

A valid cache page is valid in all address spaces

Lock the page in the cache to prevent WS removal

WS Manager trimming thread is aware of this special WS

Not accessible from user mode

Only views of mapped files may reside in the cache

File Systems and Server interaction support

Map/Unmap view of section in system cache

Lock/Unlock pages in system cache

Read section file in system cache

Purge section

Windows Operating System Internals - by David A. Solomon and Mark E. Russinovich with Andreas Polze 48

MM: POSIX fork() support

MiCloneProcessAddressSpace
Copy parent‘s address space to the child address
space

Examines each VAD‘s inheritance attribute

If needed, copies each PTE into the new address
space

For private pages: use prototype PTEs,
copy-on-write between the two processes

25

Windows Operating System Internals - by David A. Solomon and Mark E. Russinovich with Andreas Polze 49

Further Reading

Mark E. Russinovich and David A. Solomon,
Microsoft Windows Internals, 4th Edition,
Microsoft Press, 2004.

Chapter 7 - Memory Management
Address Translation (pp. 425 ff.)

Shared Memory and Mapped Files (pp. 386 ff.)

Page Frame Number Database (pp. 469 ff.)

