
1

Windows Operating System Internals - by David A. Solomon and Mark E. Russinovich with Andreas Polze

Unit OS5: Memory Management

5.2. Windows Memory Management Fundamentals

2

Copyright Notice
© 2000-2005 David A. Solomon and Mark Russinovich

These materials are part of the Windows Operating
System Internals Curriculum Development Kit,
developed by David A. Solomon and Mark E.
Russinovich with Andreas Polze

Microsoft has licensed these materials from David
Solomon Expert Seminars, Inc. for distribution to
academic organizations solely for use in academic
environments (and not for commercial use)

2

3

Roadmap for Section 5.2.

Memory Manager Features and Components

Virtual Address Space Allocation

Shared Memory and Memory-Mapped Files

Physical Memory Limits

Memory management APIs

4

Windows Memory Management
Fundamentals

Classical virtual memory management

Flat virtual address space per process
Private process address space
Global system address space
Per session address space

Object based
Section object and object-based security (ACLs...)

Demand paged virtual memory

Pages are read in on demand & written out when necessary
(to make room for other memory needs)

Provides flat virtual address space

32-bit: 4 GB, 64-bit: 16 Exabytes (theoretical)

3

5

Windows Memory Management
Fundamentals

Lazy evaluation
Sharing – usage of prototype PTEs (page table
entries)
Extensive usage of copy_on_write
...whenever possible

Shared memory with copy on write

Mapped files (fundamental primitive)
Provides basic support for file system cache
manager

6

Memory Manager Components

System services for allocating, deallocating, and managing virtual
memory
A access fault trap handler for resolving hardware-detected memory
management exceptions and making virtual pages resident on behalf of a
process
Six system threads

Working set manager (priority 16) – drives overall memory management
policies, such as working set trimming, aging, and modified page writing
Process/stack swapper (priority 23) -- performs both process and kernel
thread stack inswapping and outswapping
Modified page writer (priority 17) – writes dirty pages on the modified list
back to the appropriate paging files
Mapped page writer (priority 17) – writes dirty pages from mapped files
to disk
Dereference segment thread (priority 18) is responsible for cache and
page file growth and shrinkage
Zero page thread (priority 0) – zeros out pages on the free list

4

7

MM: Process Support

MmCreateProcessAddressSpace – 3 pages
The page directory

Points to itself

Map the page table of the hyperspace

Map system paged and nonpaged areas
Map system cache page table pages

The page table page for working set

The page for the working set list

MmInitializeProcessAddressSpace
Initialize PFN for PD and hyperspace PDEs

MiInitializeWorkingSetList

Optional: MmMapViewOfSection for image file

MmCleanProcessAddressSpace,

MmDeleteProcess AddressSpace

8

MM: Process Swap Support

MmOutSwapProcess / MmInSwapProcess

MmCreateKernelStack
MiReserveSystemPtes for stack and no-access page

MmDeleteKernelStack
MiReleaseSystemPtes

MmGrowKernelStack

MmOutPageKernelStack
Signature (thread_id) written on top of stack before write

The page goes to transition list

MmInPageKernelStack
Check signature after stack page is read / bugcheck

5

9

MM: Working Sets

Working Set:

The set of pages in memory at any time for a given process, or
All the pages the process can reference without incurring a page
fault

Per process, private address space

WS limit: maximum amount of pages a process can own

Implemented as array of working set list entries (WSLE)
Soft vs. Hard Page Faults:

Soft page faults resolved from memory (standby/modified page lis ts)

Hard page faults require disk access

Working Set Dynamics:

Page replacement when WS limit is reached

NT 4.0: page replacement based on modified FIFO
Windows 2000: Least Recently Used algorithm (uniproc.)

10

MM: Working Set Management

Modified Page Writer thread

Created at system initialization

Writing modified pages to backing file

Optimization: min. I/Os, contigous pages on disk

Generally MPW is invoked before trimming

Balance Set Manager thread

Created at system initialization

Wakes up every second

Executes MmWorkingSetManager

Trimming process WS when required: from current down to minimal WS for
processes with lowest page fault rate

Aware of the system cache working set

Process can be out-swapped if all threads have pageable kernel stack

6

11

MM: I/O Support

I/O Support operations:

Locking/Unlocking pages in memory

Mapping/Unmapping Locked Pages into current address space

Mapping/Unmapping I/O space

Get physical address of a locked page

Probe page for access

Memory Descriptor List

Starting VAD

Size in Bytes

Array of elements to be filled with physical page numbers

Physically contiguous vs. Virtually contiguous

12

MM: Cache Support

System wide cache memory
Region of system paged area reserved at initialization time

Initial default: 512 MB (min. 64MB if /3GB, max 960 MB)

Managed as system wide working set

A valid cache page is valid in all address spaces
Lock the page in the cache to prevent WS removal

WS Manager trimming thread is aware of this special WS

Not accessible from user mode

Only views of mapped files may reside in the cache
File Systems and Server interaction support

Map/Unmap view of section in system cache

Lock/Unlock pages in system cache

Read section file in system cache

Purge section

7

13

Memory Manager: Services

Caller can manipulate own/remote memory

Parent process can allocate/deallocate, read/write memory of child
process

Subsystems manage memory of their client processes this way

Most services are exposed through Windows API

Page granularity virtual memory functions (Virtualxxx...)

Memory-mapped file functions (CreateFileMapping, MapViewofFile)

Heap functions (Heapxxx, Localxxx (old), Globalxxx (old))

Services for device drivers/kernel code (Mm...)

14

Protecting Memory

Any read/write attempt raises EXCEPTION_GUARD_PAGE
and turns off guard page status

PAGE_GUARD

Write access causes creation of private copy of pg.PAGE_EXECUTE_
WRITECOPY

Write access causes the system to give process a private copy
of this page; attempts to execute code cause access violation

PAGE_WRITECOPY

All accesses permitted (relies on special processor support)PAGE_EXECUTE_
READWRITE

Read/execute access permitted (relies on special processor
support)

PAGE_EXECUTE_
READ

Any read/write causes access violation; execution of code is
permitted (relies on special processor support)

PAGE_EXECUTE

Read/write accesses permittedPAGE_READWRITE

Write/execute causes access violation; read permittedPAGE_READONLY

Read/write/execute causes access violationPAGE_NOACCESS

DescriptionAttribute

8

15

Reserving & Committing Memory
Optional 2-phase approach to memory allocation:
1. Reserve address space (in multiples of page size)

2. Commit storage in that address space

Can be combined in one call (VirtualAlloc, VirtualAllocEx)

Reserved memory:
Range of virtual addresses reserved for future use (contiguous buffer)

Accessing reserved memory results in access violation

Fast, inexpensive

Committed memory:

Has backing store (pagefile.sys, memory-mapped file)

Either private or mapped into a view of a section

Decommit via VirtualFree, VirtualFreeEx

A thread‘s user-mode stack is constructed using
this 2-phase approach: initial reserved size is 1MB,
only 2 pages are committed: stack & guard page

16

Features new to Windows 2000
Memory Management

Support of 64 GB physical memory on Intel platform
PAE – physical address extension (36 bit, changes PDE/PTE
structs)

New version of kernel (ntkrnlpa.exe, ntkrpamp.exe)

/PAE switch in boot.ini

Integrated support for Terminal Server
HydraSpace : per session

In NT 4 Terminal Server had a specific kernel

Driver Verifier: verifier.exe
Pool checking, IRQL checking

Low resources simulation, pool tracking, I/O verification

9

17

Features new to Windows XP/2003
Memory Management

64-bit support

Up to 1024 Gbytes physical memory supported

Support for Data Execution Prevention (DEP)
Memory manager supports HW no-execute
protection

Performance & Scalability enhancements

18

Shared Memory & Mapped Files

Shared memory + copy-on-
write per default

Executables are mapped as
read-only

Memory manager uses
section objects to implement
shared memory
(file mapping objects in
Windows API)

compiler
image

Physical memory

Process 1 virtual memory

Process 2 virtual memory

10

19

Virtual Address Space Allocation

Virtual address space is sparse
Address spaces contain reserved, committed, and unused
regions

Unit of protection and usage is one page
On x86, default page size is 4 KB (x86 supports 4KB or 4MB)

In PAE mode, large pages are 2 MB

On x64, default page size is 4 KB (large pages are 4 MB)

On Itanium, default page size is 8 KB
(Itanium supports 4k, 8k, 16k, 64k, 256k, 1mb, 4mb, 16mb,
64mb, or 256mb) – large is 16MB

20

Large Pages
Large pages allow a single page directory entry to map a larger region

x86, x64: 4 MB, IA64: 16 MB
Advantage: improves performance

Single TLB entry used to map larger area

Large pages are used to map NTOSKRNL, HAL, nonpaged pool, and the PFN
database if a “large memory system”

Windows 2000: more than 127 MB

Windows XP/2003: more than 255 MB
In other words, most systems…

Disadvantage: disables kernel write protection
With small pages, OS/driver code pages are mapped as read only; with large pages,
entire area must be mapped read/write

Drivers can then modify/corrupt system & driver code without immediately
crashing system

Driver Verifier turns large pages off

Can also override by changing
HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Control\Session
Manager\Memory Management\LargePageMinimumto FFFFFFFF

11

21

Large Pages: Server 2003
Enhancements

Can specify other drivers to map with large
pages:

HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlS
et\Control\Session Manager\Memory
Management\LargePageDrivers (multi-string)

Applications can use large pages for process
memory

VirtualAlloc with MEM_LARGE_PAGE flag

Can query if system supports large pages with
GetLargePageMinimum

22

Data Execution Prevention
Windows XP SP2 and Windows Server 2003 SP1 support Data
Execution Prevention (DEP)

Prevents code from executing in a memory page not specifically marked as
executable

Stops exploits that rely on getting code executed in data areas

Relies on hardware ability to mark pages as non executable

AMD calls it NX (“No Execute”)
Intel calls it XD (“Execute Disable”)

Processor support:

Intel Itanium had this in 2001, but Windows didn’t support it until now

AMD64 was the next to support it

Then, AMD added Sempron (32-bit processor with NX support)
Intel added it first with their 64-bit extension chips
(Xeon/Pentium 4s with EM64T)
More recently, Intel added it to their 32-bit processor line
(anything ending in “J”)

12

23

Data Execution Prevention

Attempts to execute code in a page marked no execute result in:

User mode: access violation exception

Kernel mode: ATTEMPTED_EXECUTE_OF_NOEXECUTE_MEMORY
bugcheck (blue screen)

Memory that needs to be executable must be marked as such using page
protection bits on VirtualAlloc and VirtualProtect APIs:

PAGE_EXECUTE, PAGE_EXECUTE_READ,
PAGE_EXECUTE_READWRITE, PAGE_EXECUTE_WRITECOPY

24

Controlling DEP

New Boot.ini switch /NOEXECUTE

/NOEXECUTE=ALWAYSON – enables DEP for all applications

/NOEXECUTE=ALWAYSOFF – disables DEP

Two qualifiers apply only to 32-bit applications:

/NOEXECUTE=OPTIN – enables DEP for core Windows programs

Default for Windows XP (32-bit and 64-bit editions)

/NOEXECUTE=OPTOUT – enables DEP for all applications except those
excluded

Default for Windows Server 2003 (32-bit and 64-bit editions)

13

25

DEP on 64-bit Windows
Always applied to all
64-bit processes and
device drivers

Protects user and
kernel stacks, paged
pool, session pool

32-bit processes
depend on configuration
settings

26

DEP on 32-bit Windows
Hardware DEP used when running 32-
bit Windows on systems that support
it

When enabled, system boots PAE
kernel (Ntkrnlpa.exe)

Kernel mode: applied to kernel stacks,
but not paged/session pool

User mode: depends on system
configuration

Even on processors without hardware
DEP, some limited protection
implemented for exception handlers

14

27

Mapped Files

A way to take part of a file and map it to a range of virtual addresses

(address space is 2 GB, but files can be much larger)

Called “file mapping objects” in Windows API

Bytes in the file then correspond one-for-one with bytes in the region of
virtual address space

Read from the “memory” fetches data from the file
Pages are kept in physical memory as needed
Changes to the memory are eventually written back to the file (can request
explicit flush)

Initial mapped files in a process include:

The executable image (EXE)

One or more Dynamically Linked Libraries (DLLs)

Processes can map additional files as desired (data files or additional
DLLs)

28

Section Objects (mapped files)
Called “file mapping objects” in Windows API
Files may be mapped into v.a.s.

// first, do EITHER ...

hMapObj = CreateFileMapping (hFile, security, protection,sizeHigh, sizeLow ,
mapname);

// … OR …

hMapObj = OpenFileMapping (accessMode, inheritflag, mapname);

// … then, pass the resulting handle to a mapping object (section) to ...

lpvoid = MapViewOfFile (hMapObj, accessMode,
offsetHigh, offsetLow , cbMap);

Bytes in the file then correspond one-for-one with bytes in the region of virtual
address space

Read from the “memory” fetches data from the file

Changes to the memory are written back to the file

Pages are kept in physical memory as needed

If desired, can map to only a part of the file at a time

15

29

Shared Memory

Like most modern OS’s, Windows provides a
way for processes to share memory

High speed IPC (used by LPC, which is
used by RPC)

Threads share address space, but
applications may be divided into multiple
processes for stability reasons

It does this automatically for shareable pages

E.g. code pages in an EXE or DLL

Processes can also create shared memory
sections

Called page file backed file mapping
objects

Full Windows security

compiler
image

Physical memory

Process 1 virtual memory

Process 2 virtual memory

30

Viewing DLLs & Memory Mapped
Files

Process Explorer lists memory mapped files

16

31

Copy-On-Write Pages

Used for sharing between process address spaces

Pages are originally set up as shared, read-only, faulted from the common
file

Access violation on write attempt alerts pager

pager makes a copy of the page and allocates it privately to the process doing the
write, backed to the paging file

So, only need unique copies for the pages in the shared region that are
actually written (example of “lazy evaluation”)

Original values of data are still shared

e.g. writeable data initialized with C initializers

32

Physical
memory

Page 3

Page 1

How Copy-On-Write Works
Before

Process
Address
Space

Orig. Data

Process
Address
Space

Orig. Data

Page 2

17

33

Process
Address
Space

Physical
memory

How Copy-On-Write Works
After

Process
Address
Space

Orig. Data

Page 3

Page 1

Page 2

Mod’d. Data

Copy of page 2

34

Shared Memory = File Mapped by
Multiple Processes

Note, the shared region
may be mapped at
different addresses in the
different processes

00000000

7FFFFFFF

User
accessible

v.a.s.

User
accessible

v.a.s.

Process A Process B

Physical
Memory

18

35

Virtual Address Space (V.A.S.)
Process space contains:

The application
you’re running
(.EXE and .DLLs)

A user-mode stack for each
thread (automatic storage)

All static storage defined by
the application

User
accessible

Kernel-mode
accessible

}
}

Unique per
process

System-
wide

00000000

7FFFFFFF

80000000

FFFFFFFF

36

Virtual Address Space (V.A.S.)

User
accessible

Kernel-mode
accessible

}
}

Unique per
process

System-
wide

System space contains:
Executive, kernel, and HAL

Statically-allocated system-
wide data cells

Page tables (remapped for
each process)

Executive heaps (pools)

Kernel-mode device drivers
(in nonpaged pool)
File system cache

A kernel-mode stack for
every thread in every
process

00000000

7FFFFFFF

80000000

FFFFFFFF

19

37

Windows User Process
Address Space Layout

No-access region to prevent threads from passing buffers
that straddle user/system space boundary

64 KB0x7FFF0000 –
0x7FFFFFFF

No-access region 60 KB0x7FFE1000 –
0x7FFEFFFF

Shared user data page – read-only, mapped to system
space, contains system time, clock tick count, version
number (avoid kernel-mode transition)

4 KB0x7FFE0000 -
0x7FFE0FFF

Process Environment Block (PEB)4 KB0x7FFDF000 -
0x7FFDFFFF

Thread Environment Block (TEB) for first thread, more TEBs
are created at the page prior to that page

4 KB0x7FFDE000 -
0x7FFDEFFF

The private process address space2 GB minus at
least 192kb

0x10000 -
07FFEFFFF

No-access region to catch incorrect pointer ref.64 KB0x0 – 0xFFFF

FunctionSizeRange

38

Unique per
process
(= per appl.),
user mode

.EXE code
Globals

Per-thread user
mode stacks

.DLL code
Process heaps

Exec, kernel,
HAL,

drivers, etc.

00000000

BFFFFFFF

FFFFFFFF

C0000000

Unique per
process,

accessible in
user or kernel

mode

3GB Process Space Option
Only available on:

Windows 2003 Server, Enterprise Edition
& Windows 2000 Advanced Server, XP
SP2

Limits phys memory to 16 GB

/3GB option in BOOT.INI

Windows Server 2003 and XP SP2
supports variations from 2GB to 3GB
(/USERVA=)

Provides 3 GB per-process address
space

Commonly used by database servers (for
file mapping)

.EXE must have “large address space
aware” flag in image header, or they’re
limited to 2 GB (specify at link time or with
imagecfg.exe from ResKit)

Chief “loser” in system space is file system
cache

Better solution: address windowing
extensions

Even better: 64-bit Windows

System wide,
accessible

only in kernel
mode

Per process,
accessible only

in kernel
mode

Process page tables,
hyperspace

20

39

Large Address Space Aware
Images

Images marked as “large address space aware”:

Lsass.exe – Security Server

Inetinfo.exe—Internet Information Server

Chkdsk.exe – Check Disk utility

Dllhst3g.exe – special version of Dllhost.exe(for COM+ applications)

Esentutl.exe - jet database repair tool

To see this type:
Imagecfg \windows\system32*.exe > large_images.txt

Then search for “large” in large_images.txt

40

Large Address Space Aware on
64-bits

Images marked large address space aware get
a full 4 GB process virtual address space

OS isn’t mapped there, so space is available for
process

21

41

Physical Memory

Maximum on Windows NT 4.0 was 4 GB for x86 (8 GB for Alpha AXP)
This is fixed by page table entry (PTE) format

What about x86 systems with > 4 GB?

Pentium Pro and Xeon systems can support up to 64 GB physical memory
Four more bits of physical address in PTEs = 36 bits = 64 GB

NT4: Intel provides a driver that allows use of RAM beyond 4 GB as a
RAM disk

Windows 2000 added proper support for PAE
Requires booting /PAE to select the PAE kernel

Actual physical memory usable varies by Windows package…

42

Physical Memory Limits (in
GB)

128

32

4

2

4

4

x64 32-bit

1024

64

n/a

n/a

n/a

n/a

IA-64 64-
bit

102464Server 2003
Datacenter

6432Server 2003
Enterprise

164Server 2003
Standard

n/a2Server 2003 Web
Edition

164XP Professional

n/a4XP Home

x64 64-bitx86

22

43

Virtual address space is still 4 GB, so how can you “use” > 4 GB of memory?

1. Although each process can only address 2 GB, many may be in memory at the same time
(e.g. 5 * 2 GB processes = 10 GB)

2. Files in system cache remain in physical memory

Although file cache doesn’t know it, memory manager keeps unmapped data in
physical memory

3. New Address Windowing Extensions allow Windows processes to use more than 2 GB of
memory

Physical Memory Usage on Systems in
PAE Mode

System
Working Set

Assigned to Virtual Cache
Standby List

960 MB

Other

~60 GB

64 GB Physical Memory

44

Address Windowing Extensions
AWE functions allow Windows
processes to allocate large
amounts of physical memory
and then map “windows” into
that memory

Applications: database servers
can cache large databases

Up to programmer to control
Like DOS enhanced memory
(EMS) with more bits…

64-bits removes this need

AWE memory

Physical memory

Process virtual memory

AWE memory

AWE memory

23

45

Windows Memory Allocation APIs

HeapCreate, Alloc, etc. (process heap APIs)
Windows equivalent of malloc(), free(), etc.

VirtualAlloc(MEM_RESERVE)

VirtualAlloc(MEM_COMMIT)

VirtualFree

VirtualQuery

46

Windows API Memory
Management Architecture

Windows Program

C library: malloc, free

Heap API:
• HeapCreate,HeapDestroy,
• HeapAlloc, HeapFree

Virtual Memory API

Memory-Mapped Files API:
• CreateFileMapping,
• CreateViewOfFile

Windows Kernel with
Virtual Memory Manager

Physical Memory
Disc &
File System

24

47

Windows Memory Management

Windows maintains pools of memory in heaps

A process can contain several heaps

C library functions manage default heap: malloc, free, calloc

Heaps are Windows objects – have handle

Each process has own default heap

Return value of NULL indicates failure
(instead of INVALID_HANDLE_VALUE)

HANDLE GetProcessHeap(VOID);
HANDLE HeapCreate (DWORD floptions ,

DWORD dwInitialSize,
DWORD dwMaximumSize);

BOOL HeapDestroy(HANDLE hHeap);

48

Managing Heap Memory

dwFlags:
HEAP_GENERATE_EXCEPTION,

raise SEH on memory allocation failure

STATUS_NO_MEMORY, STATUS_ACCESS_VIOLATION

HEAP_NO_SERIALIZE:
no serialization of concurrent (multithreaded) requests

HEAP_ZEROC_MEMORY: initialize allocated memory to zero

dwSize:

Block of memory to allocate
For non-growable heaps: 0x7FFF8 (0.5 MB)

HeapFree(), HeapReAlloc(),

HeapCompact(), HeapValidate()

LPVOID HeapAlloc(HANDLE hHeap,
DWORD dwFlags,
DWORD dwBytes);

HeapLock(), HeapUnlock():
Manage concurrent accesses
to heap

25

49

Excerpt:
Sorting with Binary Search Tree

#define NODE_HEAP_ISIZE 0x8000

__try {

/* Open the input file. */

hIn = CreateFile (fname, GENERIC_READ, 0, NULL,
OPEN_EXISTING, 0, NULL);

if (hIn == INVALID_HANDLE_VALUE)

fprintf(stderr, "Failed to open input file"), exit(1);

/* Allocate the two heaps. */

hNode = HeapCreate (

HEAP_GENERATE_EXCEPTIONS | HEAP_NO_SERIALIZE,
NODE_HEAP_ISIZE, 0);

hData = HeapCreate (

HEAP_GENERATE_EXCEPTIONS | HEAP_NO_SERIALIZE,
DATA_HEAP_ISIZE, 0);

/* Process the input file, creating the tree, actual search. */

pRoot = FillTree (hIn, hNode, hData);

50

Heap Management Example
(contd.)

/* Display the tree in Key order. */

printf ("Sorted file: %s"), fname); Scan (pRoot);

/* Destroy the two heaps and data structures. */

HeapDestroy (hNode); hNode = NULL;

HeapDestroy (hData); hData = NULL;

CloseHandle (hIn);

} /* End of main file processing and try block. */

__except (EXCEPTION_EXECUTE_HANDLER) {

if (hNode != NULL) HeapDestroy (hNode);

if (hData != NULL) HeapDestroy (hData);

if (hIn != INVALID_HANDLE_VALUE) CloseHandle (hIn);

}

return 0;

• UNIX C library uses only
a single heap

• UNIX sbrk() can create a
Process‘ address space –
no general-purpose MM

• UNIX does not generate
signals on memory alloc.

26

51

Virtual Address Space
Descriptors (VADs)

Process
Object

VAD VAD VAD

Virtual Address Space Descriptors

See kernel debugger
command:

!vad

VADs describe layout of virtual address space
Not the page mappings

Used by memory manager to interpret access faults
Assists in “lazy evaluation”

52

Example: Reserving Address
Space

LPVOID lpMem = VirtualAlloc(NULL, 120000, MEM_RESERVE,
PAGE_READWRITE);

Bottom
2 GB

reserved
for App

122880 bytes* reserved
PAGE_READWRITE

*Assumes page size = 4096

27

53

122880 bytes reserved
PAGE_READWRITE

Example: Committing Address
Space

VirtualAlloc(lpMem + 6 * 1024, 7 * 1024, MEM_COMMIT,
PAGE_READWRITE);

Bottom
2 GB

reserved
for App

*Assumes page size = 4096

12KB* Committed
PAGE_READWRITE

54

Memory-Mapped Files

No need to perform direct file I/O (read/write)

Data structures will be saved – be careful with pointers

Convenient & efficient in-memory algorithms:

Can process data much larger than physical memory

Improved performance for file processing

No need to manage buffers and file data

OS does the hard work: efficient & reliable

Multiple processes can share memory

No need to consume space in paging file

28

55

File Mapping Object

Parameters:

hFile:

hFile: handle to open file with compatible access rights (fdwProtect)

hFile == 0xFFFFFFFF: paging file, no need to create separate file

fdwProtect:

PAGE_READONLY, PAGE_READWRITE, PAGE_WRITECOPY
dwMaximumSizeHigh, dwMaximumSizeLow:

Zero: current file size is used

lpszMapName:
Name of mapping object for sharing between processes or NULL

HANDLE CreateFileMapping (HANDLE hFile,
LPSECURITY_ATTRIBUTES lpsa,
DWORD fdwProtect,
DWORD dwMaximumSizeHigh,
DWORD dwMaximumSizeLow,
LPCTSTR lpszMapName);

56

Shared Memory

Open an existing mapping object
Name comes from previous CreateFileMapping() call

First process creates mapping, subsequent processes open
mapping

dwDesiredAccess: same as fdwProtect

lpName: name created with CreateFileMapping()

CloseHandle() destroys mapping handles

HANDLE OpenFileMapping (HANDLE hFile,
DWORD dwDesiredAccess,
BOOL bInheritHandle,
LPCTSTR lpName);

29

57

Mapping Process Address Space
to Mapping Objects

Allocate virtual memory space and map it to a file through a mapping
object

Similar to HeapAlloc – much coarser granularity

Pointer to allocated block is returned (file view)

Parameters:
FILE_MAP_WRITE, FILE_MAP_READ, FILE_MAP_ALL_ACCESS
flag bits for fdwAccess

cbMap: size; entire file if zero
FlushViewOfFile(): create consistent view

LPVOID MapViewOfFile(HANDLE hMapObject,
DWORD fdwAccess, DWORD dwOffsetHigh,
DWORD dwOffsetLow, DWORD cbMap);

BOOL UnmapViewOfFile (LPVOID lpBaseAddress);

UNIX:
4.3BSD/SysV.4
have mmap() call;

See also
shmget(),shmctl(),
shmat(),shmdt()

Limitation:
2GB virtual
Address space

58

Example: File Conversion with
Memory Mapping (Excerpt)

/* Open the input file. */

hIn = CreateFile (fIn, GENERIC_READ, 0, NULL,

OPEN_EXISTING, FILE_ATTRIBUTE_NORMAL, NULL);

if (hIn == INVALID_HANDLE_VALUE) fprintf(stderr, "Failure opening input file."), exit(1);

/* Create a file mapping object on the input file. Use the file size. */

hInMap = CreateFileMapping (hIn, NULL, PAGE_READONLY, 0, 0, NULL);

if (hInMap == INVALID_HANDLE_VALUE) fprintf(stderr, "Failure Creating input map."), exit(2);

pInFile = MapViewOfFile (hInMap, FILE_MAP_READ, 0, 0, 0);

if (pInFile == NULL) fprintf(stderr, "Failure Mapping input file."), exit(3);

/* The output file MUST have Read/Write access for the mapping to succeed. */

hOut = CreateFile (fOut, GENERIC_READ | GENERIC_WRITE,

0, NULL, CREATE_ALWAYS, FILE_ATTRIBUTE_NORMAL, NULL);

if (hOut == INVALID_HANDLE_VALUE) fprintf(stderr, "Failure Opening output file."), exit(4);

hOutMap = CreateFileMapping (hOut, NULL, PAGE_READWRITE, 0, 2 * FsLow, NULL);

if (hOutMap == INVALID_HANDLE_VALUE) fprintf(stderr, "Failure creating output map."), exit(5);

pOutFile = MapViewOfFile (hOutMap, FILE_MAP_WRITE, 0, 0, 2 * FsLow);

if (pOutFile == NULL) fprintf(stderr, "Failure mapping output file."), exit(6);

30

59

Example (contd.)
pIn = pInFile; /* actual file conversion */

pOut = pOutFile;
while (pIn < pInFile+ FsLow) {

*pOut = (WCHAR) *pIn; pIn++; pOut++;
}

/* Close all views and handles. */

UnmapViewOfFile (pOutFile); UnmapViewOfFile (pInFile);
CloseHandle(hOutMap); CloseHandle (hInMap);

CloseHandle(hIn); CloseHandle (hOut);
Complete = TRUE; return TRUE;

}

_except (EXCEPTION_EXECUTE_HANDLER) {
/* Delete the output file if the operation did not complete successfully. */

if (!Complete)
DeleteFile (fOut);

return FALSE;
}

60

Memory Management APIs
Memory protection may be changed

per-page basis

status = VirtualProtect(baseAddress, size, newProtect, pOldprotect);

Page protection choices:
PAGE_NOACCESS PAGE_EXECUTE

PAGE_READONLY PAGE_EXECUTE_READ

PAGE_READWRITE PAGE_EXECUTE_READWRITE

PAGE_WRITECOPY PAGE_EXECUTE_WRITECOPY

PAGE_GUARD

PAGE_NOCACHE

31

61

Memory Management Information

VOID GetSystemInfo(LPSYSTEM_INFO lpSystemInfo);

typedef struct _SYSTEM_INFO {

DWORD dwOemId;
DWORD dwPageSize;
LPVOID lpMinimumApplicationAddress;
LPVOID lpMaximumApplicationAddress;
DWORD dwActiveProcessorMask;
DWORD dwNumberOfProcessors;
DWORD dwProcessorType;
DWORD dwAllocationGranularity;
DWORD dwReserved;

} SYSTEM_INFO;

62

Querying Address Space

DWORD VirtualQuery(LPVOID lpAddress,
PMEMORY_BASIC_INFORMATION lpBuffer, DWORD dwLength);

Returns:

typedef struct _MEMORY_BASIC_INFORMATION {
PVOID BaseAddress; // Block base
PVOID AllocationBase; // Region base
DWORD AllocationProtect;// Region prot
DWORD RegionSize; // # bytes in block
DWORD State; // State of block:

// MEM_RESERVE, MEM_COMMIT, MEM_FREE
DWORD Protect; // Pages prot
DWORD Type; // Type:

// MEM_IMAGE, MEM_MAPPED, MEM_PRIVATE
} MEMORY_BASIC_INFORMATION;

32

63

Memory Management Information
VOID GlobalMemoryStatus(LPMEMORYSTATUS lpms);

typedef struct _MEMORYSTATUS {
DWORD dwLength; // sizeof(MEMORYSTATUS)
DWORD dwMemoryLoad;
DWORD dwTotalPhys;
DWORD dwAvailPhys;
DWORD dwTotalPageFile;
DWORD dwAvailPageFile;
DWORD dwTotalVirtual; // Process specific
DWORD dwAvailVirtual; // Process specific

} MEMORYSTATUS, *LPMEMORYSTATUS;

Note: much more available via Registry Performance counters

64

Further Reading

Mark E. Russinovich and David A. Solomon, Microsoft Windows
Internals, 4th Edition, Microsoft Press, 2004.

Chapter 7 - Memory Management

Memory Manager (from pp.375)

Services the Memory Manager Provides (from pp. 382)

Jeffrey Richter, Programming Applications for Microsoft Windows,
4th Edition, Microsoft Press, September 1999.

Chapter 5 - Windows API Memory Architecture

Chapter 7 - Using Virtual Memory

Chapter 8 - Memory-Mapped Files

Chapter 9 - Heaps

