
1

Unit OS4: Scheduling and Dispatch

4.6. Lab description

Windows Operating System Internals - by David A. Solomon and Mark E. Russinovich with Andreas Polze 1

Copyright Notice
© 2000-2005 David A. Solomon and Mark Russinovich

These materials are part of the Windows Operating
System Internals Curriculum Development Kit,
developed by David A. Solomon and Mark E.
Russinovich with Andreas Polze

Microsoft has licensed these materials from David
Solomon Expert Seminars, Inc. for distribution to
academic organizations solely for use in academic
environments (and not for commercial use)

2

Windows Operating System Internals - by David A. Solomon and Mark E. Russinovich with Andreas Polze 2

Labs for 4.2

The following is a superset of the labs presented
in module

“4.2. Windows Processes and Threads”

Windows Operating System Internals - by David A. Solomon and Mark E. Russinovich with Andreas Polze 3

Task Manager: Processes vs
Applications Tabs

Processes tab: List of
processes

“Running” means
waiting for window
messages

Applications tab: List of top
level visible windows

Right-click on a
window and select
“Go to process”

3

Windows Operating System Internals - by David A. Solomon and Mark E. Russinovich with Andreas Polze 4

What Are Task Manager’s “Applications”?

A meaningless term at the OS level

Not a list of processes

Not a list of “tasks” (another
meaningless term)

It’s a list of top level visible windows in
your session that meet certain criteria

What does the status column mean?

Running:

Windows don’t run—threads do

Running displayed only when
owning thread is waiting for a
window message (e.g. not running!)

Not Responding: not waiting for window
messages

To map a window to a process, right-
click on a window and select “Go to
process”

Windows Operating System Internals - by David A. Solomon and Mark E. Russinovich with Andreas Polze 5

Process Explorer (Sysinternals)

“Super Task Manager”

Shows full image path, command line, environment variables,
parent process, security access token, open handles, loaded DLLs
& mapped files

4

Windows Operating System Internals - by David A. Solomon and Mark E. Russinovich with Andreas Polze 6

Lab: The Process List

1. Run Process Explorer & maximize window

2. Run Task Manager – click on Processes tab

3. Arrange windows so you can see both

4. Notice process tree vs flat list in Task Manager
l If parent has exited, process is left justified

5. Sort on first column (“Process”) and note tree
view disappears

6. Click on View->Show Process Tree (or
CTRL+T) to bring it back

7. Notice description and company name columns

Windows Operating System Internals - by David A. Solomon and Mark E. Russinovich with Andreas Polze 7

Lab: Refresh Highlighting

1. Change update speed to paused by pressing space bar

2. Run Notepad

3. In ProcExp, hit F5 and notice new process

4. Exit Notepad

5. In ProcExp, hit F5 and notice Notepad in red

Uses
Understanding process startup sequences

Detecting appearance of processes coming and going

5

Windows Operating System Internals - by David A. Solomon and Mark E. Russinovich with Andreas Polze 8

Process Performance

• Click on Performance Tab of process properties
l Note: all these numbers can be configured as columns

Windows Operating System Internals - by David A. Solomon and Mark E. Russinovich with Andreas Polze 9

Thread Details

Process Explorer
“Threads” tab shows
which thread(s) are
running

Start address represents
where the thread began
running (not where it is
now)

Click Module to get details
on module containing
thread start address

6

Windows Operating System Internals - by David A. Solomon and Mark E. Russinovich with Andreas Polze 10

Thread Start Functions

Process Explorer can map the addresses within a module to
the names of functions

This can help identify which component within a process is
responsible for CPU usage

Requires access to:

Symbol file for that module

Proper version of Dbghelp.dll

By default, Process Explorer looks for:
Dbghelp.dll: in the default Windows Debugging Tools install
directory

Symbols: _NT_SYMBOL_PATH environment variable

Can also specify with Options->Configure Symbols

Windows Operating System Internals - by David A. Solomon and Mark E. Russinovich with Andreas Polze 11

Call Stacks

Process Explorer can also show
the thread call stack

Represents sequence of
functions called

Important if start address
doesn’t indicate what the thread
is doing

E.g. if it’s a generic library start
routine

Function 2

Function 1

Function 3

7

Windows Operating System Internals - by David A. Solomon and Mark E. Russinovich with Andreas Polze 12

Call Stacks

Click Stack to view call stack
Lists functions in reverse
chronological order

Note that start address on
Threads tab is different than
first function shown in stack

This is because all user threads
start in a Windows library
function which calls the
programmed start address

Windows Operating System Internals - by David A. Solomon and Mark E. Russinovich with Andreas Polze 13

Example: Viewing Stacks

Problem: Powerpoint was hanging for 1 minute on
startup

Thread stack shows waiting on a printer driver

8

Windows Operating System Internals - by David A. Solomon and Mark E. Russinovich with Andreas Polze 14

Suspending Processes

Process Explorer can suspend a process
Why would you want to do this?

You’ve started a long running job but want to pause it
to do something else

Lowering the priority still leaves it running…

You’ve started a long download but want to have
your network bandwidth temporarily
Some multi-service system process activity is due to
other processes calling upon their services

Suspend a process that is consuming CPU time to see
what that does to the system process in question

Windows Operating System Internals - by David A. Solomon and Mark E. Russinovich with Andreas Polze 15

Lab: Suspend

Start Notepad

From a command prompt:
1. Suspend Notepad process with Process Explorer

2. Try to switch back to Notepad (should not respond)

3. Open Task Manager and look at Notepad’s status in
the applications tab ☺

4. Resume Notepad

9

Windows Operating System Internals - by David A. Solomon and Mark E. Russinovich with Andreas Polze 16

Process Explorer Lab: Column
Selection And Username

Notice additional details show for each process
(icon, description)

Click on View->Select Columns
Add username column

Compare username column in Task Manager
with Process Explorer – what is the difference?

Deselect View->Show Processes From All Users

Windows Operating System Internals - by David A. Solomon and Mark E. Russinovich with Andreas Polze 17

Process Explorer Lab: Command
Line

Double click on date/time in task bar (lower right
of screen)

In Process Explorer, hit F5 to refresh

Find new process created (RUNDLL32.EXE)

Examine command line arguments

Example: cmd.exe process was consuming lots
of CPU time

Command line argument showed which .BAT file
was running

10

Windows Operating System Internals - by David A. Solomon and Mark E. Russinovich with Andreas Polze 18

Examining CPU Time

Open process
properties and
look at CPU usage
history on the
performance
graph page
Hover the mouse
over a point to see
the time of that
value

Windows Operating System Internals - by David A. Solomon and Mark E. Russinovich with Andreas Polze 19

Process Explorer Lab:
Environment Variables

Click on Environment Tab of process properties

11

Windows Operating System Internals - by David A. Solomon and Mark E. Russinovich with Andreas Polze 20

Process Explorer Lab:
Environment Variables

Open a command prompt

Run Notepadexe from command prompt

Type “set dave=smarter_than_mark”

In ProcExp, hit F5 and examine environment
variables for Cmd.exe and Notepad.exe

Notice Notepad.exe does not know that Dave is
smarter than Mark ☺

Windows Operating System Internals - by David A. Solomon and Mark E. Russinovich with Andreas Polze 21

Security

Click on Security tab of
process properties

Shows rest of access token
(username is on image tab)

Groups list

Includes OS-assigned groups

Privileges (user rights)

Disabled by default

Programs turn these on when
needed

This is really a “Resultant Set
of Groups” and “Resultant Set
of Privileges” page

12

Windows Operating System Internals - by David A. Solomon and Mark E. Russinovich with Andreas Polze 22

.NET Information

Process Explorer is aware
of .NET processes

Can highlight with Options-
>Highlight .NET Processes

Process properties have
.NET tab

Shows details about .NET
process (CLR, Appdomains)

Can also add .NET-specific
columns to process list

Windows Operating System Internals - by David A. Solomon and Mark E. Russinovich with Andreas Polze 23

Windows Status
If you really like Task Manager’s Applications
tab:

Add the Window Title column

Add the Window Status column
Uses the same Windows function as Task Manager to
determine status

13

Windows Operating System Internals - by David A. Solomon and Mark E. Russinovich with Andreas Polze 24

Lab: Window Process Finder

Use the Window process finder toolbar button
to identify the owner of a window

Lab:
1. Open Regedit and modify

HKLM\System\CurrentControlSet\Control\
ProductOptions\ProductType

2. Move the window process finder target over the
resulting popup to see what process owns the
window

Windows Operating System Internals - by David A. Solomon and Mark E. Russinovich with Andreas Polze 25

Lab: Viewing Process Activity

1. Task Manager:

Applications tab: find the process that owns a window (right mouse click
on window title)

Process tab: add a few additional columns: Virtual Memory size, Handle
count, Thread count

Windows 2000: add I/O counters; right click on a process & notice “end
process tree” option

2. Look at process hierarchy with Process Explorer

Start a command prompt, then run Notepad from command prompt, and
find new process in process list

Exit the command prompt and notice Notepad process moves to bottom
of list since it has no parent

14

Windows Operating System Internals - by David A. Solomon and Mark E. Russinovich with Andreas Polze 26

PS Tools
Group of 12 process/system control tools

Where’d the “Ps” come from?
The UNIX process listing tool is
named “ps”

The first PsTool was a UNIX “ps”-equivalent, PsList

They all work on Windows NT4/2000/XP/2003

They all work remotely as well as locally
Require admin rights to remote system

Can specify credentials with “-u” switch

None require manual remote software installation

Windows Operating System Internals - by David A. Solomon and Mark E. Russinovich with Andreas Polze 27

PS Tools
Psfile – lists & closes remote file opens

Psshutdown – remote shutdown, lock workstation, log off user

Psexec – run an app on a remote system

Pslist – list processes & threads

Psuptime – system up time

Psinfo – display general system info

Psgetsid – displays computer or user SIDs

Psservice – service process control (like SC in XP)

Psloglist – dumps event log in text

PsSuspend – suspend a process

PsKill – kill processes

Psloggedon – lists local and remote logon sessions

Pspassword – change local/remote passwords

15

Windows Operating System Internals - by David A. Solomon and Mark E. Russinovich with Andreas Polze 28

PsKill

The perfect complement to PsList
is PsKill

Similar to Resource Kit Kill and Remote Kill

See a process running on a remote (or local) system
with PsList, kill it with PsKill

Unlike Task Manager, PsKill lets you kill any
process if you’re an admin

Uses “Debug” privilege

Uses auto-installed remote service and
TerminateProcess API

Windows Operating System Internals - by David A. Solomon and Mark E. Russinovich with Andreas Polze 29

PsList/PsKill Lab
1. Open a command prompt

2. Try Pslist on your machine
l c:\sysint\pslist

l c:\sysint\pslist –t (tree view)

l c:\sysint\pslist -s (autorefresh)

3. Look at process list on your neighbor’s machine
l c:\sysint\pslist \\computername

4. Kill Explorer.exe on your neighbor’s workstation
l c:\sysint\pskill \\computer explorer.exe

16

Windows Operating System Internals - by David A. Solomon and Mark E. Russinovich with Andreas Polze 30

PsExec

Remotely execute programs
Executes console programs interactively

Allows you to start programs as yourself , in alternate user
credentials, or in the System account

With PsExec you can:
Launch a remote command prompt to effect
a light-weight telnet

Remote-enable “local only” command-line tools
like IpConfig

Uses auto-installed remote service

Windows Operating System Internals - by David A. Solomon and Mark E. Russinovich with Andreas Polze 31

PsExec Lab

1. Open a command prompt

2. Run Regedit under System account:
psexec -s -i c:\windows\regedit.exe

3. Start Notepad interactively on another workstation (or to
yourself if not on a network):
l c:\sysint\psexec –i \\computer notepad.exe

l Find the Notepad process you created by examining the process
tree with pslist on the remote system
l Notice parent service process

17

Windows Operating System Internals - by David A. Solomon and Mark E. Russinovich with Andreas Polze 32

Lab Series 4.3.

The following labs capitalize on the materials
presented in Section

“4.3. Windows Process and Thread Internals”

Windows Operating System Internals - by David A. Solomon and Mark E. Russinovich with Andreas Polze 33

Process/Thread Kernel Debugger
Commands

!process [/s Session] [Address/Pid [Flags]]
!process – display current process (not full details)

!process 342 – display full details of process 342

!process 829fa030 – display process identified by EPROCESS address
!process 0 0 – summary display of all processes

!process 0 7 – full details of all processes

!thread [Address [Flags]]
!thread – current thread
!thread 826e8898 – display thread identified by ETHREAD address

To view user stack, must set process context:
.process <address of EPROCESS>

.context <address of page directory (Dirbase)>

!peb [Address]
!teb [Address]

18

Windows Operating System Internals - by David A. Solomon and Mark E. Russinovich with Andreas Polze 34

Process Block (!process)

PROCESS ff704020 Cid: 0075 Peb: 7ffdf000 ParentCid: 005d
 DirBase: 0063c000 ObjectTable: ff7063c8 TableSize: 70.
 Image: Explorer.exe
 VadRoot ff70d6e8 Clone 0 Private 229. Modified 236. Locked 0.
 FF7041DC MutantState Signalled OwningThread 0
 Token e1462030
 ElapsedTime 0:01:19.0874
 UserTime 0:00:00.0991
 KernelTime 0:00:02.0613
 QuotaPoolUsage[PagedPool] 18317
 QuotaPoolUsage[NonPagedPool] 3824
 Working Set Sizes (now,min,max) (727, 20, 45) (2908KB, 80KB, 180KB)
 PeakWorkingSetSize 757
 VirtualSize 29 Mb
 PeakVirtualSize 31 Mb
 PageFaultCount 1396
 MemoryPriority FOREGROUND
 BasePriority 8
 CommitCharge 250

EPROCESS address Process ID Address of
 process environment block

Process ID of
parent process

Time the process
has been running,
divided into User
and Kernel time

Physical address
of Page Directory

root of the process’s
Virtual Address
Descriptor tree

Windows Operating System Internals - by David A. Solomon and Mark E. Russinovich with Andreas Polze 35

Thread Block (!thread)

THREAD 83160f60 Cid 9f.3d Teb: 7ffdc000 Win32Thread: e153d2c8
WAIT: (WrUserRequest) UserMode Non-Alertable

808e9d60 SynchronizationEvent
Not impersonating
Owning Process 81b44880
WaitTime (seconds) 953945
Context Switch Count 2697 LargeStack
UserTime 0:00:00.0289
KernelTime 0:00:04.0664
Start Address kernel32!BaseProcessStart (0x77e8f268)
Win32 Start Address 0x020d9d98
Stack Init f7818000 Current f7817bb0 Base f7818000 Limit f7812000 Call 0
Priority 14 BasePriority 8 PriorityDecrement 6 DecrementCount 13

Kernel stack not resident.

ChildEBP RetAddr Args to Child
f7817bb0 8008f430 00000001 00000000 00000000 ntoskrnl!KiSwapThreadExit
f7817c50 de0119ec 00000001 00000000 00000000 ntoskrnl!KeWaitForSingleObject+0x2a0
f7817cc0 de0123f4 00000001 00000000 00000000 win32k!xxxSleepThread+0x23c
f7817d10 de01f2f0 00000001 00000000 00000000 win32k!xxxInternalGetMessage+0x504
f7817d80 800bab58 00000001 00000000 00000000 win32k!NtUserGetMessage+0x58
f7817df0 77d887d0 00000001 00000000 00000000 ntoskrnl!KiSystemServiceEndAddress+0x4
0012fef0 00000000 00000001 00000000 00000000 user32!GetMessageW+0x30

Address of ETHREAD

Thread ID

Address of thread
environment block

Objects being
waited on

Thread
state

Address of system
service dispatch table

Priority Information

Actual thread start address

Stack trace

Address of user thread function

Process ID

19

Windows Operating System Internals - by David A. Solomon and Mark E. Russinovich with Andreas Polze 36

Dumping Structures with Kernel
Debugger
“dt” (“Display Type”) command can format most kernel structures

Syntax: “dt StructureName address –r”

dt nt!_* - displays all OS structures known to dt

Note: relies on type information in symbol files
Public symbols have this for XP, Windows Server 2003, and Window s 2000
SP4 and later

Process/thread-related structures:
nt!_EPROCESS

nt!_ETHREAD

nt!_PEB

nt!_TEB

nt!_TOKEN

nt!_JOB

Windows Operating System Internals - by David A. Solomon and Mark E. Russinovich with Andreas Polze 37

lkd> dt nt!_EPROCESS
+0x000 Pcb : _KPROCESS
+0x06c ProcessLock : _EX_PUSH_LOCK
+0x070 CreateTime : _LARGE_INTEGER
+0x078 ExitTime : _LARGE_INTEGER
+0x080 RundownProtect : _EX_RUNDOWN_REF
+0x084 UniqueProcessId : Ptr32 Void
+0x088 ActiveProcessLinks : _LIST_ENTRY
+0x090 QuotaUsage : [3] Uint4B
+0x09c QuotaPeak : [3] Uint4B
+0x0a8 CommitCharge : Uint4B
+0x0ac PeakVirtualSize : Uint4B
+0x0b0 VirtualSize : Uint4B

.

.

Process Block Layout

Ø NOTE: Add “-r” to recurse through substructures

20

Windows Operating System Internals - by David A. Solomon and Mark E. Russinovich with Andreas Polze 38

Thread Block (!strct ethread)

lkd> dt nt!_ETHREAD
+0x000 Tcb : _KTHREAD
+0x1c0 CreateTime : _LARGE_INTEGER
+0x1c0 NestedFaultCount : Pos 0, 2 Bits
+0x1c0 ApcNeeded : Pos 2, 1 Bit
+0x1c8 ExitTime : _LARGE_INTEGER
+0x1c8 LpcReplyChain : _LIST_ENTRY
+0x1c8 KeyedWaitChain : _LIST_ENTRY
+0x1d0 ExitStatus : Int4B
+0x1d0 OfsChain : Ptr32 Void
+0x1d4 PostBlockList : _LIST_ENTRY
+0x1dc TerminationPort : Ptr32 _TERMINATION_PORT
+0x1dc ReaperLink : Ptr32 _ETHREAD

Ø NOTE: Add “-r” to recurse through substructures

Windows Operating System Internals - by David A. Solomon and Mark E. Russinovich with Andreas Polze 39

Lab Series 4.4.

The following labs capitalize on the materials
presented in Section

“4.4. Windows Thread Scheduling”

21

Windows Operating System Internals - by David A. Solomon and Mark E. Russinovich with Andreas Polze 40

Watching
Scheduling
CPUSTRES.EXE -
Creating a Test Case

Run: cpustres.exe
(Resource Kit)

Screen snapshot from:
Run… cpustres

Windows Operating System Internals - by David A. Solomon and Mark E. Russinovich with Andreas Polze 41

Watching the Scheduler
Performance Monitor - Threads Object

Screen snapshot from: Programs | Admin. Tools
| Performance Monitor select “Add to Chart”,

and Object: Thread. use Ctrl-leftClick to select
multiple items in a selection box

22

Windows Operating System Internals - by David A. Solomon and Mark E. Russinovich with Andreas Polze 42

Watching the Scheduler
Performance Monitor - Options | Chart

Screen snapshot from: Performance Monitor
Options menu | Chart command

Set chart maximum
vertical scale to 16

Set update interval to
0.1 seconds or less

Windows Operating System Internals - by David A. Solomon and Mark E. Russinovich with Andreas Polze 43

Watching the Scheduler
Performance Monitor

Screen snapshot from:
PerfMon main window, setup from previous slide

Thread states are
indicated by numbers
(see thread state
transition diagram on
previous slide, or
Perfmon Explain
display for Thread State
counter)

5 = waiting
2 = running
1 = ready

23

Windows Operating System Internals - by David A. Solomon and Mark E. Russinovich with Andreas Polze 44

Lab Series 4.5.

The following labs capitalize on the materials
presented in Section

“4.5. Advanced Windows Scheduling”

Windows Operating System Internals - by David A. Solomon and Mark E. Russinovich with Andreas Polze 45

Looking at Waiting Threads
For waiting threads, user-mode utilities only display the wait reason

Example: pstat

To find out what a thread is waiting on, must use kernel debugger

24

Windows Operating System Internals - by David A. Solomon and Mark E. Russinovich with Andreas Polze 46

Looking at Wait Queues
!thread command to kernel debugger

Lists addresses of objects being waited on (if a mutex, shows owner)

!irpfind can search IRPs for an event object address

Windows Operating System Internals - by David A. Solomon and Mark E. Russinovich with Andreas Polze 47

Lab: Foreground Priority Boosts

See Book “EXPERIMENT: Watching
Foreground Priority Boosts and Decays”, p.351

See Book “EXPERIMENT: Watching Priority
Boosts on GUI Threads”, p.353

25

Windows Operating System Internals - by David A. Solomon and Mark E. Russinovich with Andreas Polze 48

Priority Boost and Decay
Demo with CpuStres and PerfMon

CpuStres settings:

two active threads

activity level = busy (about
25% wait time)

normal process priority class,
normal thread priorities

Usually only visible in PerfMon if
target app owns foreground
window (hence longer quantum)

These are showing +2 boost
(from 8 to 10) for foreground
apps after wait completion

Windows Operating System Internals - by David A. Solomon and Mark E. Russinovich with Andreas Polze 49

Lab: CPU Starvation Resolution

See Book EXPERIMENT: Watching
Priority Boosts for CPU Starvation,
p.355

CpuStres with two compute-bound
threads (“maximum” activity level)

One is at lower priority than the other

See Book EXPERIMENT: “Listening
to Priority Boosting”, p.357

