Lab Manual - OS3 Concurrency

Unit OS3: Concurrency

3.5. Lab Slides & Lab Manual

Windows Operating System Internals - by David A. Solomon and Mark E. Russinovich with Andreas Polze

Lab Manual - OS3 Concurrency

Roadmap for Section 3.5.

Lab experiments investigating:

©® Viewing the interrupt dispatch table

@ Viewing configuration of programmable interrupt
controller (PIC/APIC)

@ Viewing the interrupt request level (IRQL) on Windows
© Monitoring Interrupt and DPC activity

® Viewing System Service Activity

® Viewing Global Queued Spinlocks

® | ooking at Wait Queues

Copyright Notice

© 2000-2005 David A. Solomon and Mark Russinovich

These materials are part of the Windows Operating System Internals Curriculum Development Kit,
developed by David A. Solomon and Mark E. Russinovich with Andreas Polze

Microsoft has licensed these materials from David Solomon Expert Seminars, Inc. for distribution to
academic organizations solely for use in academic environments (and not for commercial use)

Lab Manual - OS3 Concurrency

x86 Interrupt Controllers -
Hardware Interrupt Processing

® Most x86 systems rely on
© i8259A Programmable Interrupt Controller (PIC) or

@ a variant of the 82489 Advanced Programmable
Interrupt Controller (APIC) - most new computers

® PICs work only with uniprocessor systems

@ APICs work with multiprocessor systems
® Lab: Observe PIC / APIC configuration

@ Use !pic and !apic kernel debugger commands

EXPERIMENT: Viewing the PIC and APIC

You can view the configuration of the PIC on a uniprocessor and the APIC on a
multiprocessor by using the !pic and !apic kernel debugger commands, respectively.
(You can't use LiveKd for this experiment because LiveKd can’t access hardware.)
Here’s the output of the !pic command on a uniprocessor. (Note that the !pic command
doesn’t work if your system is using an APIC HAL.)

kd>!pic

—TIRQ Number—- 00 01 02 03 04 05 06 07 08 09 OA OB OC 0D OE OF

Physicallymasked: ... Y ..YY..Y..Y..
Physicallyrequested:
LevelTriggered: Y ...Y .Y

Here’s the output of the !'apic command on a system running with the MPS HAL. The
“0:” prefix for the debugger prompt indicates that commands are running on processor
0, so this is the 1/0O APIC for processor O:

1kd>!apic

Apic @ fffe0000 ID:0 (40010) LogDesc:01000000 DestFmt:fffffff TPR20
Time Cnt:0bebc200clk SpurVec:3f FaultVec:e3 errar:0

Tol Cmd:0004001f Vec:1F FixedDel Dest=Self edg high
Timer..:000300fd Vec:FD FixedDel Dest=Self edg high masked
Lirti0.:0001003f Vec:3F FixedDel Dest=Self edg high masked
Lirtil.:000184ff Vec:FF NMI Dest=Self v high masked
TMR:61,82,91-92,B1

IRR:

ISR:

Lab Manual - OS3 Concurrency

Viewing the IRQL on Windows

® On Windows Server 2003, kernel debugger displays
IRQL:
® lirgl debugger command:
kd> lirgl
Debugger saved IRQL for processor 0x0 -- 0 (LOW_LEVEL)
® Processor control region (PCR) and processor control
block (PRCB) store:

©® current IRQL,

©® pointer to the hardware IDT,
©® currently running thread,
e

next thread selected to run.

EXPERIMENT: Viewing the IRQL

If you are running the kernel debugger on Windows Server 2003, you can view a
processor’s IRQL with the !irgl debugger command:

kd> lirgl Debuggersaved IRQL for processor 0x0--0 (LOW_LEVEL)

Note that there is a field called IRQL in a data structure called the processor control
region (PCR) and its extension the processor control block (PRCB), which contain
information about the state of each processor in the system, such as the current IRQL,
a pointer to the hardware IDT, the currently running thread, and the next thread
selected to run. The kernel and the HAL use this information to perform architecture-
specific and machine-specific actions. Portions of the PCR and PRCB structures are
defined publicly in the Windows Device Driver Kit (DDK) header file Ntddk.h, so
examine that file if you want a complete definition of these structures. You can view the
contents of the PCR with the kernel debugger by using the !pcr command:

kd> Ipcr

PCR Processor 0@ffdffO00
NtTib.ExceptionList: f8effc68
NtTib.StackBase: f8effdf0
NtTib.StackLimit: f8efd000
NtTib.SubSystemTib: 00000000
NtTib.Version: 00000000

Unfortunately, Windows does not maintain the Irgl field on systems that do not use lazy
IRQL, so on most systems the field will always be 0.

Lab Manual - OS3 Concurrency

Lab: Viewing IRQL/IRQ Assignments

1. Display the interrupt vector
¢ XP/2003: lidt
@ Win2000: 'kdex2x86.idt

2. Dump the KINTERRUPT block for the PS/2 mouse ISR to
get the IRQL

(Dt nt! KINTERRUPT XXXXXX)

3. With Device Manager, go to the mouse device properties and
click on the resources tab to see the IRQ

@ If you are on a uniprocessor system, the IRQ should be the 27-IRQL

@ Note: IRQL is raised when breaking in with debugger or on a
crash

@ !per displays this changed IRQL
@ lirgl displays previous IRQL (Server 2003 & later)

EXPERIMENT: Viewing the IDT

You can view the contents of the IDT, including information on what trap handlers
Windows has assigned to interrupts (including exceptions and IRQs), using the lidt
kernel debugger command. The !idt command with no flags shows vectors that map to
addresses in modules other than Ntoskrnl.exe. The following example shows what the
output of the lidt command looks like:

kd> lidt

Dumping IDT:

30: 806b14cOhal!HalpClockinterrupt

31: 8a39dc3ci8042prt!I8042KeyboardinterruptService(KINTERRUPT 8a39dc00)

34: 8a436dd4serial!'SerialClsrSw (KINTERRUPT8a436d98)

35: 8a44ed74NDIS!ndisMIsr(KINTERRUPT 8a44ed38)
portcls!CinterruptSync::Release+0x10 (KINTERRUPT899c44a0)

38: 806abe80hal!'HalpProfilelnterrupt

39: 8a4a8abcACPI!ACPIInterruptServiceRoutine (KINTERRUPT 8a4a8a80

3h: 8a48d8c4pcmcia!Pcmcialnterrupt (KINTERRUPT8a48d888)
0hci1394!0hcilsr(KINTERRUPT8a41dal8)
VIDEOPRT!pVideoPortinterrupt(KINTERRUPT 8albc2c0)
USBPORT!USBPORT_InterruptService (KINTERRUPT 8a2302b8)
USBPORT!USBPORT_ InterruptService (KINTERRUPT 8a0b8008)
USBPORT!IUSBPORT_InterruptService (KINTERRUPT 8a170008)
USBPORTIUSBPORT _InterruptService (KINTERRUPT 8a258380)
NDIS!IndisMIsr(KINTERRUPT 8a0e0430)

3c: 8a39d3eci8042prtlI8042MouselnterruptService(KINTERRUPT 8a39d3b0)

3e: 8a47264catapilldePortinterrupt (KINTERRUPT8a472610)

3f: 8a489b3catapilldePortinterrupt (KINTERRUPT8a489b00)

On the system used to provide the output for this experiment, the keyboard device
driver’s (18042prt.sys) keyboard ISR is at interrupt number 0x3C and several devices—
including the video adapter, PCMCIA bus, USB and IEEE 1394 ports, and network
adapter—share interrupt 0x3B.

Lab Manual - OS3 Concurrency

Lab: Kernel Profiling

® Since time spent at DPC level and above is not accounted by driver
type, one way to determine where time has been spent in kernel mode
is by using a profiling/sampling tool

® Kernrate is a such a tool

® Free download from
http://www.microsoft.com/whdc/system/sysperf/krview.mspx

® Can be used both for kernel time and user mode processes

® Can show where time is being spent down to the function level

® May miss short lived events or events close to the sampling interval
® Lab:

® Download and install Kernrate

[+

cd c:\program files\krview\kernrates
® Kernrate_i386_XP.exe -z ntoskrnl.exe —j srv*c:\symbols

@ Perform some system activity (run Windows Media Player, drag windows
around, etc)

2 Press ~C to stop execution

EXPERIMENT: Using Kernel Profiler to Profile Execution
You can use the Kernel Profiler tool to enable the system profiling timer, collect

»pw DR

samples of the code that is executing when the timer fires, and display a
summary showing the frequency distribution across image files and functions.
It can be used to track CPU usage consumed by individual processes and/or
time spent in kernel mode independent of processes (for example, interrupt
service routines). Kernel profiling is useful when you want to obtain a
breakdown of where the system is spending time. In its simplest form, Kernrate
samples where time has been spent in each kernel module (for example,
Ntoskrnl, drivers, and so on). For example, after installing the Krview package
referred to previously, try performing the following steps:

Open a command prompt.
Type cd c:\program files\krview\kernrates.
Type dir. (You will see kernrate images for each platform.)

Run the image that matches your platform (with no arguments or switches). For
example, Kernrate _i386_XP.exe is the image for Windows XP running on an
x86 system.

While Kernrate is running, go perform some other activity on the system. For
example, run Windows Media Player and play some music, run a graphics-
intensive game, or perform network activity such as doing a directory of a
remote network share.

Press Ctrl+C to stop Kernrate. This causes Kernrate to display the statistics
from the sampling period.

Lab Manual - OS3 Concurrency

Flow of Interrupts

;o
2
| 3
U0 L
— { —
— =l
TT
Peripheral Device CPU Interrupt

Controller Controller —l,

crulmemTupt

Service Table

ISR Address

Spin Lock

Dispatch
Code

|

Interrupt KilnterruptDispatch Driver ISR
Object

EXPERIMENT: Examining Interrupt Internals

Using the kernel debugger, you can view details of an interrupt object, including its
IRQL, ISR address, and custom interrupt dispatching code. First, execute the lidt
command and locate the entry that includes a reference to
I8042KeyboardinterruptService, the ISR routine for the PS2 keyboard device:

31: 8a39dc3ci8042prt!I8042Keyboardinterrupt Service (KINTERRUPT 8a39dc00)

To view the contents of the interrupt object associated with the interrupt, execute dt
nt!_kinterrupt with the address following KINTERRUPT:

kd> ¢t ! kinternrupt 8a39dc00

nt! KINTERRUPT

+0x000Type : 22

+0x002Size : 484

+0x004IrterruptlistEntry : IIST ENTRY [0x8a39dc04- 0x8a39dc04]
+0x00cServiceRoutine : Oxba7e74a2 i8042p1t/I8042 KeyboardinterruptService+0
+0x010S8erviceContext : 0x8a067898

+0x014 Spinlock : 0

+0x018TickCount : OxfHHTE

+0x01cActuallock : 0x8a067958 -> 0

+0x020DispatchAddress : 0x80531140 nt!KilterruptDispatch+0
+0x024Vectar : 0x31 +0x028Trgl : 0x1a'’’

+0x029 Synchronizelrdl : 0xla’

+0x02aFloatingSave : 0’

In this example, the IRQL Windows assigned to the interrupt is Ox1a (which is 26 in
decimal). Because this output is from a uniprocessor x86 system, we calculate that the
IRQ is 1, because IRQLs on x86 uniprocessors are calculated by subtracting the IRQ
from 27. We can verify this by opening the Device Manager, locating the PS/2 keyboard
device, and viewing its resource assignments.

Lab Manual - OS3 Concurrency

Lab: ISR/DPC Tracing

® XP SP2 and Server 2003 SP1 and later support tracing ISRs and
DPCs

1. Start capturing events (tracelog.exe is in Support Tools):
tracelog -start -f kernel.etl -b 64 -UsePerfCounter -eflag 8 0x307
0x4084000000

2. Stop capturing events:
tracelog -stop
3. Generate reports (tracerpt.exe is part of Windows):
tracerpt kernel.etl -df —report -0
4. Review workload.txt to determine where ISR/DPC time spent

5. Open "dumpfile.csv" & search for lines with "DPC" or "ISR" in the
second value. In kernel debugger, do an “In” on 8" argument (start
address)

9

You can also trace the execution of specific interrupt service routines and
deferred procedure calls with the built-in event tracing support in Windows XP
Service Pack 2 and Windows Server 2003 Service Pack 1 and later.

1. Start capturing events by typing the following command: tracelog -start -
fkernel.etl -b 64 -UsePerfCounter eflag 8 0x307 0x4084000000

2. Stop capturing events by typing: tracelog -stop tostop logging.

3. Generate reports for the event capture by typing: tracerpt kernel.etl -df -o -
report This will generate two files: workload.txt and dumpfile.csv.

4. Open “workload.txt” and you will see summaries of the time spent in ISRs and
DPCs by each driver type.

5. Open the file “dumpfile.csv” created in step 4; search for lines with “DPC” or
“ISR” in the second value. For example, the following three lines from a
dumpfile.csv generated using the above commands show a timer DPC, a
DPC, and an ISR:

Perflnfo, TimerDPC, OXFFFFFFFF, 127383953645422825, O,
0,127383953645421500, OXFB0O3A385,0,0

Perflnfo, DPC, OXFFFFFFFF, 127383953645424040, 0,
0,127383953645421394, 0x804DC87D,0,0

Perfinfo, ISR, OXFFFFFFFF, 127383953645470903, O,
0,127383953645468696, 0xFB48D5EO0,0,0, 0

Doing an “In” command in the kernel debugger on the start address in each event
record (the eighth value on each line) shows the name of the function that
executed the DPC or ISR:

Lab Manual - OS3 Concurrency

Spinlocks in Action

CPU1 CPU 2

10

EXPERIMENT: Viewing Global Queued Spinlocks

You can view the state of the global queued spinlocks (the ones pointed to by the
gueued spinlock array in each processor's PCR) by using the Iglock kernel debugger
command. This command is meaningful only on a multiprocessor system because
uniprocessor HALs don’t implement spinlocks.

In the following example, taken from a Windows 2000 system, the dispatcher database
gueued spinlock is held by processor 1, and the other queued spinlocks are not
acquired. (The dispatcher database is described in Book Chapter 6.)

kd> !dlocks Key: O = Owner,1-n = Waitarder, Hank = notowned/waiting, C = Corrupt
Processor Number
LockName 0 12345678 9101112 13 14 15
KE-Dispatcher O
KE-ContextSwap
MM-PFN
M M- SystemSpace
CC-Vacb

CC- Master

Lab Manual - OS3 Concurrency

Looking at Waiting Threads

® For waiting threads, user-mode utilities only display the wait reason
©® Example: pstat

Command Prompt ;lglll

-
- \WINDOWSYSYSTEM3 25 pstat :’
Pstat _ver‘s‘ion 0.3: memory: 130480 kb uptime: 0O 21:24:36.734

pid: O pri: O Hnd: o Pf: 1 Ws: 16K Idle Process
r

tid pri Ctx Swkch Strtadd User Time Kernel Time State
4] 4] 2845450 0 0:00:00,000 20:55:56.375 Running
4] 4] 3056193 0 0:00:00,000 21:09:33.234 Running
pid: 2 pri: 8 Hnd: 221 Pf: 1875 Ws: 200K System
tid pri Ctx Swkch Strtaddr User Time Kernel Time State
1) 21214 801c3fec ©:00:00.000 0:00:39.687 Wait:FreePage
3 16 51 8010baFa 0:00:00.000 0:00:00.000 Wait:EventPairlLow

4 16 45518 8010baFa 0:00:00.000 0:00:00.906 Wait:EventPairLow

pid: 92 pri:z 8 Hnd: 78 Pf: 8711 Ws: 1140K Explorer.exe
tid pri Ctx Swich StrtAddr User Time Kernel Time State
48 14 122844 F7fO52ec 0:00:04.703 0:00:26.312 Wait:UserRequest

G g 826 FAFO52el 0:00:00.015 0:00:00.140 Wait:UserRequest
as 14 23048 F7f052e0 0:00:04,.140 0:00:11.562 wait:UserRequest
ag 14 4976 FPfO52ed 0:00:00.203 0:00:00.921 Wait:UserRequest
a7 14 1378 77f052e0 0:00:00.000 0:00:00.000 Wait:lpcReceive

® To find out what a thread is waiting on, must use kernel debugger

11

EXPERIMENT: Looking at Wait Queues

Although many process viewer utilities indicate whether a thread is in a wait state (and
if so, they also indicate what kind of wait), you can see the list of objects a thread is
waiting for only with the kernel debugger !thread command. For example, the following
excerpt from the output of a !process command shows that the thread is waiting for an
event object:

kd> !process

THREAD 8al2a328 Cid 0bb8.0d50 Teb:7fdd000 Win32 Thread:e7c9aeb0 WAIT:
(WrUserRequest) UserModeNon-Alertable 8a21bf58
SynchronizabionEvent

Lab Manual - OS3 Concurrency

Looking at Wait Queues

©® lthread command to kernel debugger
@ Lists addresses of objects being waited on (if a mutex, shows owner)
@ lirpfind can search IRPs for an event object address

m[ﬁnmmand Prompt - i386kd -z d-\memory_dmp - IDIﬂ
0: kd> !thread BOBOO9GD ;I
Ithread 80800960
[THREAD BOB00960 Cid 28.95 Teb: 7ffaf0dd Win32Thread: 280141330 WAIT: {UserRequ_g
esid UserMode Non-Alertable

207300 SynchronizationEwvent

80800248 MNotificationTimer

Mot impersonating
wning Process §08a36al

aitTime {seconds) 3398

Context Switch Count 17

serTime 0:00:00.0000
KernelTime 0:00:00.0000

Start Address Ox77f052ed

in3z Start Address OxF7e2ed73

Stack Init fc4a2000 Current fodalefd Base fo4a2000 Limit fod8F000 Call O
Friority 9 BasePriority & PriorityDecrement O DecrementCount O

cannot get wersion packet on a crash dump

_hi1dEEP Retaddr Args to Child

fcdalePc 20117020 00000000 fcdalec® 2018d601 ntkrnlmplKiSwapThread+0xibi
frdalead 8018d70d 207300 00000006 RO018d601 ntkrnimplKeWaitForSingledbject+ixih

i
fcdalefd 8013e3le QOOOD1FE Q0000000 fcdalecd ntkrnlmp!NtwWaitForSingledbject+ixa?

frdalefd 77f6819b 00000178 Q0000000 frodalecd ntkrnlmp!KiSystemservice+Oxbe
frdaledc fodaleal BOPTT300 BOBODO960 80800%cc +Ox7Frf6813b

e ks

- =

12

You can use the dt command to interpret the dispatcher header of the object like this:
kd>dtnt! dispatcher header8a21bf58

nt! DISPATCHER _HEADER +0x000

Type :0x1 " +0x001

Absalute :0' +0x002

Size :0x4 " +0x003

Inserted :0”" +0x004

SignalState :0 +0x008

WaitlistHead : IIST ENTRY [0x8al2a398-0x8a12a398]

From this, we can ascertain that no other threads are waiting for this event object
because the wait list head forward and backward pointers point to the same location (a
single wait block). Dumping the wait block (at address 0x8a12a398) yields the following:
kd>dtnt! kwait block 0x8al2a398

nt! KWAIT BLOCK +0x000

WaitlistEntry : IIST ENTRY [0x8a21bf60-0x8a21bf60] +0x008
Thread :0x8al12a328 +0x00c

Object :0x8a21bf58 +0x010

Next WaitBlock :0x8a12a398 +0x014

WaitKey :0 +0x016

WaitType :1

If the wait list had more than one entry, you could execute the same command on the

second pointer value in the WaitListEntry field of each wait block (by executing !thread
on the thread pointer in the wait block) to traverse the list and see what other threads

are waiting for the object.

