
Lab Manual - OS3 Concurrency

Windows Operating System Internals Windows Operating System Internals -- by David A. Solomon and Mark E. Russinovich with Andreas Polzeby David A. Solomon and Mark E. Russinovich with Andreas Polze

Unit OS3: ConcurrencyUnit OS3: Concurrency
3.5.3.5. Lab Slides & Lab ManualLab Slides & Lab Manual

Lab Manual - OS3 Concurrency

3

Roadmap for Section 3.5.Roadmap for Section 3.5.

Lab experiments investigating:Lab experiments investigating:

Viewing the interrupt dispatch tableViewing the interrupt dispatch table
Viewing configuration of programmable interrupt Viewing configuration of programmable interrupt
controller (PIC/APIC)controller (PIC/APIC)
Viewing the interrupt request level (IRQL) on WindowsViewing the interrupt request level (IRQL) on Windows
Monitoring Interrupt and DPC activityMonitoring Interrupt and DPC activity
Viewing System Service ActivityViewing System Service Activity
Viewing Global Queued Viewing Global Queued SpinlocksSpinlocks
Looking at Wait QueuesLooking at Wait Queues

Copyright Notice
© 2000-2005 David A. Solomon and Mark Russinovich

These materials are part of the Windows Operating System Internals Curriculum Development Kit,
developed by David A. Solomon and Mark E. Russinovich with Andreas Polze
Microsoft has licensed these materials from David Solomon Expert Seminars, Inc. for distribution to
academic organizations solely for use in academic environments (and not for commercial use)

Lab Manual - OS3 Concurrency

4

x86 Interrupt Controllers x86 Interrupt Controllers --
Hardware Interrupt ProcessingHardware Interrupt Processing

Most x86 systems rely on Most x86 systems rely on
i8259A Programmable Interrupt Controller (PIC) or i8259A Programmable Interrupt Controller (PIC) or

a variant of the i82489 Advanced Programmable a variant of the i82489 Advanced Programmable
Interrupt Controller (APIC) Interrupt Controller (APIC) -- most new computersmost new computers

PICsPICs work only with work only with uniprocessoruniprocessor systemssystems
APICsAPICs work with multiprocessor systemswork with multiprocessor systems

Lab: Observe PIC / APIC configurationLab: Observe PIC / APIC configuration
UseUse !!picpic and and !!apicapic kernel debugger commandskernel debugger commands

EXPERIMENT: Viewing the PIC and APIC
You can view the configuration of the PIC on a uniprocessor and the APIC on a
multiprocessor by using the !pic and !apic kernel debugger commands, respectively.
(You can’t use LiveKd for this experiment because LiveKd can’t access hardware.)
Here’s the output of the !pic command on a uniprocessor. (Note that the !pic command
doesn’t work if your system is using an APIC HAL.)
lkd>!pic

-----IRQ Number-----00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F
Physically in service:
Physically masked: . . . Y . . Y Y . . Y . . Y . .
Physically requested:
LevelTriggered: Y . . . Y . Y

Here’s the output of the !apic command on a system running with the MPS HAL. The
“0:” prefix for the debugger prompt indicates that commands are running on processor
0, so this is the I/O APIC for processor 0:
lkd>!apic

Apic@ fffe0000 ID:0 (40010)LogDesc:01000000 DestFmt:ffffffffTPR20
TimeCnt:0bebc200clk SpurVec:3f FaultVec:e3 error:0
Ipi Cmd:0004001f Vec:1F FixedDel Dest=Selfedg high
Timer..:000300fd Vec:FD FixedDel Dest=Selfedg high masked
Linti0.:0001003f Vec:3F FixedDel Dest=Selfedg high masked
Linti1.:000184ffVec:FF NMIDest=Selflvlhigh masked
TMR:61,82,91-92,B1
IRR:
ISR:

Lab Manual - OS3 Concurrency

5

Viewing the IRQL on WindowsViewing the IRQL on Windows

On Windows Server 2003, kernel debugger displays On Windows Server 2003, kernel debugger displays
IRQL:IRQL:

!!irqlirql debugger command: debugger command:
kdkd> !> !irqlirql
Debugger saved IRQL for processor 0x0 Debugger saved IRQL for processor 0x0 ---- 0 (LOW_LEVEL)0 (LOW_LEVEL)

Processor control region (PCR) and processor control Processor control region (PCR) and processor control
block (PRCB) store:block (PRCB) store:

current IRQL,current IRQL,

pointer to the hardware IDT, pointer to the hardware IDT,

currently running thread, currently running thread,

next thread selected to run. next thread selected to run.

EXPERIMENT: Viewing the IRQL
If you are running the kernel debugger on Windows Server 2003, you can view a

processor’s IRQL with the !irql debugger command:
kd> !irql Debuggersaved IRQL for processor 0x0--0 (LOW_LEVEL)
Note that there is a field called IRQL in a data structure called the processor control
region (PCR) and its extension the processor control block (PRCB), which contain
information about the state of each processor in the system, such as the current IRQL,
a pointer to the hardware IDT, the currently running thread, and the next thread
selected to run. The kernel and the HAL use this information to perform architecture-
specific and machine-specific actions. Portions of the PCR and PRCB structures are
defined publicly in the Windows Device Driver Kit (DDK) header file Ntddk.h, so
examine that file if you want a complete definition of these structures. You can view the
contents of the PCR with the kernel debugger by using the !pcr command:
kd> !pcr
PCR Processor 0@ffdff000
NtTib.ExceptionList: f8effc68
NtTib.StackBase: f8effdf0
NtTib.StackLimit: f8efd000
NtTib.SubSystemTib: 00000000
NtTib.Version: 00000000
….
Unfortunately, Windows does not maintain the Irql field on systems that do not use lazy
IRQL, so on most systems the field will always be 0.

Lab Manual - OS3 Concurrency

6

Lab: Viewing IRQL/IRQ AssignmentsLab: Viewing IRQL/IRQ Assignments

1.1. Display the interrupt vectorDisplay the interrupt vector
XP/2003: !XP/2003: !idtidt
Win2000: !kdex2x86.idtWin2000: !kdex2x86.idt

2.2. Dump the KINTERRUPT block for the PS/2 mouse ISR to Dump the KINTERRUPT block for the PS/2 mouse ISR to
get the IRQLget the IRQL

((DtDt nt!_KINTERRUPTnt!_KINTERRUPT xxxxxxxxxxxx))

3.3. With Device Manager, go to the mouse device properties and With Device Manager, go to the mouse device properties and
click on the resources tab to see the IRQclick on the resources tab to see the IRQ

If you are on a If you are on a uniprocessoruniprocessor system, the IRQ should be the 27system, the IRQ should be the 27--IRQLIRQL

Note: IRQL is raised when breaking in with debugger or on a Note: IRQL is raised when breaking in with debugger or on a
crashcrash

!!pcrpcr displays this changed IRQLdisplays this changed IRQL
!!irqlirql displays previous IRQL (Server 2003 & later)displays previous IRQL (Server 2003 & later)

EXPERIMENT: Viewing the IDT
You can view the contents of the IDT, including information on what trap handlers
Windows has assigned to interrupts (including exceptions and IRQs), using the !idt
kernel debugger command. The !idt command with no flags shows vectors that map to
addresses in modules other than Ntoskrnl.exe. The following example shows what the
output of the !idt command looks like:
kd> !idt
Dumping IDT:
30: 806b14c0hal!HalpClockInterrupt
31: 8a39dc3ci8042prt!I8042KeyboardInterruptService(KINTERRUPT 8a39dc00)
34: 8a436dd4serial!SerialCIsrSw (KINTERRUPT8a436d98)
35: 8a44ed74NDIS!ndisMIsr(KINTERRUPT 8a44ed38)

portcls!CInterruptSync::Release+0x10 (KINTERRUPT899c44a0)
38: 806abe80hal!HalpProfileInterrupt
39: 8a4a8abcACPI!ACPIInterruptServiceRoutine (KINTERRUPT 8a4a8a80
3b: 8a48d8c4pcmcia!PcmciaInterrupt (KINTERRUPT8a48d888)

ohci1394!OhciIsr(KINTERRUPT8a41da18)
VIDEOPRT!pVideoPortInterrupt(KINTERRUPT 8a1bc2c0)
USBPORT!USBPORT_InterruptService (KINTERRUPT 8a2302b8)
USBPORT!USBPORT_InterruptService (KINTERRUPT 8a0b8008)
USBPORT!USBPORT_InterruptService (KINTERRUPT 8a170008)
USBPORT!USBPORT_InterruptService (KINTERRUPT 8a258380)
NDIS!ndisMIsr(KINTERRUPT 8a0e0430)

3c: 8a39d3eci8042prt!I8042MouseInterruptService(KINTERRUPT 8a39d3b0)
3e: 8a47264catapi!IdePortInterrupt (KINTERRUPT8a472610)
3f: 8a489b3catapi!IdePortInterrupt (KINTERRUPT8a489b00)

On the system used to provide the output for this experiment, the keyboard device
driver’s (I8042prt.sys) keyboard ISR is at interrupt number 0x3C and several devices—
including the video adapter, PCMCIA bus, USB and IEEE 1394 ports, and network
adapter—share interrupt 0x3B.

Lab Manual - OS3 Concurrency

7

Lab: Kernel ProfilingLab: Kernel Profiling
Since time spent at DPC level and above is not accounted by drivSince time spent at DPC level and above is not accounted by driver er
type, one way to determine where time has been spent in kernel mtype, one way to determine where time has been spent in kernel mode ode
is by using a is by using a profiling/sampling profiling/sampling tooltool
KernrateKernrate is a such a toolis a such a tool

Free download from Free download from
http://www.microsoft.com/http://www.microsoft.com/whdc/system/sysperf/krview.mspxwhdc/system/sysperf/krview.mspx
Can be used both for kernel time and user mode processesCan be used both for kernel time and user mode processes
Can show where time is being spent down to the function levelCan show where time is being spent down to the function level
May miss short lived events or events close to the sampling inteMay miss short lived events or events close to the sampling intervalrval

Lab:Lab:
Download and install Download and install KernrateKernrate
cdcd c:c:\\program filesprogram files\\krviewkrview\\kernrateskernrates
Kernrate_i386_XP.exe Kernrate_i386_XP.exe --z z ntoskrnl.exentoskrnl.exe ––j j srvsrv*c:*c:\\symbolssymbols

Perform some system activity (run Windows Media Player, drag winPerform some system activity (run Windows Media Player, drag windows dows
around, etc)around, etc)
Press ^C to stop executionPress ^C to stop execution

EXPERIMENT: Using Kernel Profiler to Profile Execution
You can use the Kernel Profiler tool to enable the system profiling timer, collect

samples of the code that is executing when the timer fires, and display a
summary showing the frequency distribution across image files and functions.
It can be used to track CPU usage consumed by individual processes and/or
time spent in kernel mode independent of processes (for example, interrupt
service routines). Kernel profiling is useful when you want to obtain a
breakdown of where the system is spending time. In its simplest form, Kernrate
samples where time has been spent in each kernel module (for example,
Ntoskrnl, drivers, and so on). For example, after installing the Krview package
referred to previously, try performing the following steps:

1. Open a command prompt.
2. Type cd c:\program files\krview\kernrates.
3. Type dir. (You will see kernrate images for each platform.)
4. Run the image that matches your platform (with no arguments or switches). For

example, Kernrate_i386_XP.exe is the image for Windows XP running on an
x86 system.

5. While Kernrate is running, go perform some other activity on the system. For
example, run Windows Media Player and play some music, run a graphics-
intensive game, or perform network activity such as doing a directory of a
remote network share.

6. Press Ctrl+C to stop Kernrate. This causes Kernrate to display the statistics
from the sampling period.

Lab Manual - OS3 Concurrency

8

Flow of InterruptsFlow of Interrupts

CPU Interrupt
Controller

CPU Interrupt
Service Table

ISR Address

Spin Lock

Dispatch
Code

Peripheral Device
Controller

0
2
3

n

Raise IRQL

Lower IRQL

Read from device

Acknowledge-
Interrupt

Request DPC

Interrupt
Object

KiInterruptDispatch Driver ISR

Grab Spinlock

Drop Spinlock

EXPERIMENT: Examining Interrupt Internals
Using the kernel debugger, you can view details of an interrupt object, including its
IRQL, ISR address, and custom interrupt dispatching code. First, execute the !idt
command and locate the entry that includes a reference to
I8042KeyboardInterruptService, the ISR routine for the PS2 keyboard device:
31: 8a39dc3ci8042prt!I8042KeyboardInterruptService(KINTERRUPT 8a39dc00)

To view the contents of the interrupt object associated with the interrupt, execute dt
nt!_kinterrupt with the address following KINTERRUPT:
kd> dt nt!_kinterrupt8a39dc00

nt!_KINTERRUPT
+0x000Type : 22
+0x002Size : 484
+0x004InterruptListEntry :_LIST_ENTRY [0x8a39dc04- 0x8a39dc04]
+0x00cServiceRoutine : 0xba7e74a2 i8042prt!I8042KeyboardInterruptService+0
+0x010ServiceContext : 0x8a067898
+0x014SpinLock : 0
+0x018TickCount : 0xffffffff
+0x01cActualLock : 0x8a067958 -> 0
+0x020DispatchAddress : 0x80531140 nt!KiInterruptDispatch+0
+0x024Vector : 0x31 +0x028Irql : 0x1a’’
+0x029SynchronizeIrql : 0x1a’’

+0x02aFloatingSave : 0’’

…
In this example, the IRQL Windows assigned to the interrupt is 0x1a (which is 26 in
decimal). Because this output is from a uniprocessor x86 system, we calculate that the
IRQ is 1, because IRQLs on x86 uniprocessors are calculated by subtracting the IRQ
from 27. We can verify this by opening the Device Manager, locating the PS/2 keyboard
device, and viewing its resource assignments.

Lab Manual - OS3 Concurrency

9

Lab: ISR/DPC TracingLab: ISR/DPC Tracing
XP SP2 and Server 2003 SP1 and later support tracing XP SP2 and Server 2003 SP1 and later support tracing ISRsISRs and and
DPCsDPCs

1. Start capturing events (1. Start capturing events (tracelog.exetracelog.exe is in Support Tools):is in Support Tools):
tracelogtracelog --start start --f f kernel.etlkernel.etl --b 64 b 64 --UsePerfCounterUsePerfCounter --eflageflag 8 0x307 8 0x307
0x4084 0 0 0 0 0 0 0x4084 0 0 0 0 0 0

2. Stop capturing events:2. Stop capturing events:

tracelogtracelog --stopstop

3. Generate reports (3. Generate reports (tracerpt.exetracerpt.exe is part of Windows):is part of Windows):

tracerpttracerpt kernel.etlkernel.etl --dfdf ––report report --oo

4. Review 4. Review workload.txtworkload.txt to determine where ISR/DPC time spentto determine where ISR/DPC time spent

5. Open "5. Open "dumpfile.csvdumpfile.csv" & search for lines with "DPC" or "ISR" in the " & search for lines with "DPC" or "ISR" in the
second value. In kernel debugger, do an second value. In kernel debugger, do an ““lnln”” on 8on 8thth argument (start argument (start
address)address)

You can also trace the execution of specific interrupt service routines and
deferred procedure calls with the built-in event tracing support in Windows XP
Service Pack 2 and Windows Server 2003 Service Pack 1 and later.

1. Start capturing events by typing the following command: tracelog -start -
fkernel.etl -b 64 -UsePerfCounter eflag 8 0x307 0x4084000000

2. Stop capturing events by typing: tracelog -stop tostop logging.
3. Generate reports for the event capture by typing: tracerpt kernel.etl -df -o -

report This will generate two files: workload.txt and dumpfile.csv.
4. Open “workload.txt” and you will see summaries of the time spent in ISRs and

DPCs by each driver type.
5. Open the file “dumpfile.csv” created in step 4; search for lines with “DPC” or

“ISR” in the second value. For example, the following three lines from a
dumpfile.csv generated using the above commands show a timer DPC, a
DPC, and an ISR:
PerfInfo, TimerDPC, 0xFFFFFFFF, 127383953645422825, 0,
0,127383953645421500, 0xFB03A385,0,0
PerfInfo, DPC, 0xFFFFFFFF, 127383953645424040, 0,
0,127383953645421394, 0x804DC87D,0,0
PerfInfo, ISR, 0xFFFFFFFF, 127383953645470903, 0,
0,127383953645468696, 0xFB48D5E0,0,0, 0

Doing an “ln” command in the kernel debugger on the start address in each event
record (the eighth value on each line) shows the name of the function that
executed the DPC or ISR:

Lab Manual - OS3 Concurrency

10

Try to acquire spinlock:
Test, set, was set, loop
Test, set, was set, loop
Test, set, was set, loop
Test, set, was set, loop
Test, set, WAS CLEAR
(got the spinlock!)
Begin updating data

Try to acquire spinlock:
Test, set, WAS CLEAR
(got the spinlock!)
Begin updating data
that’s protected by the
spinlock

(done with update)
Release the spinlock:
Clear the spinlock bit

SpinlocksSpinlocks in Actionin Action

CPU 1 CPU 2

EXPERIMENT: Viewing Global Queued Spinlocks
You can view the state of the global queued spinlocks (the ones pointed to by the
queued spinlock array in each processor’s PCR) by using the !qlock kernel debugger
command. This command is meaningful only on a multiprocessor system because
uniprocessor HALs don’t implement spinlocks.
In the following example, taken from a Windows 2000 system, the dispatcher database
queued spinlock is held by processor 1, and the other queued spinlocks are not
acquired. (The dispatcher database is described in Book Chapter 6.)

kd> !qlocks Key: O = Owner,1-n = Waitorder, blank = notowned/waiting, C = Corrupt
Processor Number

LockName 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
KE-Dispatcher O
KE-ContextSwap
M M-PFN
M M-SystemSpace
CC-Vacb

CC– Master

Lab Manual - OS3 Concurrency

11

Looking at Waiting ThreadsLooking at Waiting Threads
For waiting threads, userFor waiting threads, user--mode utilities only display the wait reasonmode utilities only display the wait reason
Example: Example: pstatpstat

To find out To find out whatwhat a thread is waiting on, must use kernel debuggera thread is waiting on, must use kernel debugger

EXPERIMENT: Looking at Wait Queues
Although many process viewer utilities indicate whether a thread is in a wait state (and
if so, they also indicate what kind of wait), you can see the list of objects a thread is
waiting for only with the kernel debugger !thread command. For example, the following
excerpt from the output of a !process command shows that the thread is waiting for an
event object:

kd> !process

THREAD 8a12a328 Cid 0bb8.0d50 Teb:7ffdd000 Win32 Thread:e7c9aeb0 W AIT:
(WrUserRequest) UserModeNon-Alertable 8a21bf58

SynchronizationEvent

Lab Manual - OS3 Concurrency

12

Looking at Wait QueuesLooking at Wait Queues
!thread command to kernel debugger!thread command to kernel debugger

Lists addresses of objects being waited on (if a Lists addresses of objects being waited on (if a mutexmutex, shows owner), shows owner)

!!irpfindirpfind can search can search IRPsIRPs for an event object addressfor an event object address

You can use the dt command to interpret the dispatcher header of the object like this:
kd>dtnt!_dispatcher_header8a21bf58

nt!_DISPATCHER_HEADER +0x000
Type :0x1 ’’ +0x001
Absolute :0’’ +0x002
Size :0x4 ’’ +0x003
Inserted :0’’ +0x004
SignalState :0 +0x008
WaitListHead :_LIST_ENTRY [0x8a12a398-0x8a12a398]

From this, we can ascertain that no other threads are waiting for this event object
because the wait list head forward and backward pointers point to the same location (a
single wait block). Dumping the wait block (at address 0x8a12a398) yields the following:
kd>dtnt!_kwait_block 0x8a12a398

nt!_KWAIT_BLOCK +0x000
WaitListEntry :_LIST_ENTRY [0x8a21bf60-0x8a21bf60] +0x008
Thread :0x8a12a328 +0x00c
Object :0x8a21bf58 +0x010
NextWaitBlock :0x8a12a398 +0x014
WaitKey :0 +0x016
WaitType :1

If the wait list had more than one entry, you could execute the same command on the
second pointer value in the WaitListEntry field of each wait block (by executing !thread
on the thread pointer in the wait block) to traverse the list and see what other threads
are waiting for the object.

