
Lab Manual - OS2 Operating System Principles

Windows Operating System Internals - by David A. Solomon and Mark E. Russinovich with Andreas Polze

Unit OS2:
Operating System Principles
2.5. Lab Slides & Lab Manual

Lab Manual - OS2 Operating System Principles

3

Roadmap for Section 2.6.

Lab experiments investigating:

Process Execution
Object Manager & Handles
Interrupt Handling
Memory Pools Labs
System Threads
System Processes

Copyright Notice
© 2000-2005 David A. Solomon and Mark Russinovich

These materials are part of the Windows Operating System Internals Curriculum Development Kit,
developed by David A. Solomon and Mark E. Russinovich with Andreas Polze
Microsoft has licensed these materials from David Solomon Expert Seminars, Inc. for distribution to
academic organizations solely for use in academic environments (and not for commercial use)

Lab Manual - OS2 Operating System Principles

4

Kernel-Mode vs User-Mode
QuickSlice (qslice.exe)

Fastest way to find CPU hogs
Red=Kernel, Blue=User mode
Double-click on a process to
see a per-thread display for
that process
Sum of threads’ bars for a
process represents all of the
process’s time, not all CPU
time

Screen snapshot from:
Resource Kit | QuckSlice

EXPERIMENT: Viewing Thread Activity with QuickSlice
QuickSlice gives a quick, dynamic view of the proportions of system and kernel time
that each process currently running on your system is using. On line, the red part of the
bar shows the amount of CPU time spent in kernel mode, and the blue part shows the
user-mode time.
The total of all bars shown in the QuickSlice window should add up to 100 percent of
CPU time. To run QuickSlice, click the Start button, choose Run, and enter Qslice.exe
(assuming the Windows 2000 resource kit is in your path). For example, try running a
graphics-intensive application such as Paint (Mspaint.exe). Open QuickSlice and Paint
side by side, and draw squiggles in the Paint window.
For additional information about the threads in a process, you can also double-click on
a process (on either the process name or the colored bar).

Lab Manual - OS2 Operating System Principles

7

Task Manager: Processes vs Applications
Tabs

Processes tab: List of
processes

“Running” means
waiting for window
messages

Applications tab: List of top
level visible windows

Right-click on a
window and select
“Go to process”

EXPERIMENT: Viewing Process Information with Task Manager
The built-in Windows Task Manager provides a quick list of the processes running on
the system. You can start Task Manager in one of three ways:
press Ctrl+Shift+Esc,
right-click on the taskbar and select Task Manager, or
press Ctrl+Alt+Delete and click the Task Manager button. Once Task Manager has

started, click the Processes tab to see the list of running processes. Notice that
processes are identified by the name of the image of which they are an instance.
Unlike some objects in Windows, processes can’t be given global names.
To display additional details, choose Select Columns from the View menu and select
additional columns to be added.
Although what you see in the Task Manager Processes tab is clearly a list of processes,
what the Applications tab displays isn’t as obvious. The Applications tab lists the top-
level visible windows on all the desktops in the interactive window station. (By default,
there are two desktop objects—you can create more by using the Windows
CreateDesktop function.) The Status column indicates whether or not the thread that
owns the window is in a Windows message wait state. “Running” means the thread is
waiting for windowing input; “Not Responding” means the thread isn’t waiting for
windowing input (for example, the thread might be running or waiting for I/O or some
Windows synchronization object).

Lab Manual - OS2 Operating System Principles

8

Process Explorer (Sysinternals)
“Super Task Manager”

Shows full image path, command line, environment variables,
parent process, security access token, open handles, loaded DLLs
& mapped files

EXPERIMENT: Viewing Process Details with Process Explorer
Download the latest version of Process Explorer from www.sysinternals.com and run it.
The first time you run it, you will receive a message that symbols are not currently
configured. If properly configured, Process Explorer can access symbol information to
display the symbolic name of the thread start function and functions on its call stack
(available by double-clicking on a process and clicking on the Threads tab). This is
useful for identifying what threads are doing within a process.
To access symbols, you must have the Debugging Tools installed (described later in
this chapter). Then click on Options, choose Configure Symbols, and fill in the
appropriate Symbols path. For example: In the preceding example, the on-demand
symbol server is being used to access symbols and a copy of the symbol files are
being stored on the local machine in the c:\symbols folder. For more information on
configuring use of the symbol server, see http://
www.microsoft.com/whdc/ddk/debugging/symbols.mspx.
When Process Explorer starts, it shows by default the process list on the top half and
the open handles for the currently selected process on the bottom half. It also shows
the image description, company name, and full path if you hover the mouse pointer
over the process name.

Lab Manual - OS2 Operating System Principles

10

Process Explorer Lab: Process List
1. Run Process Explorer & maximize window

2. Run Task Manager – click on Processes tab

3. Arrange windows so you can see both

4. Notice process tree vs flat list in Task Manager
If parent has exited, process is left justified

5. Sort on first column (“Process”) and note tree view disappears

6. Sort Process column 2 more times and tree view returns
Can also Click on View->Show Process Tree or press CTRL+T to
bring it back

7. Notice description and company name columns

8. Hover mouse over image name to see full path

9. Right click on a process and choose “Google”

Here are a few steps to walk you through some basic capabilities of Process Explorer:
1. Turn off the lower pane by deselecting View, Show Lower Pane.
2. Notice that processes hosting services are highlighted by default in pink. Your own

processes are highlighted in blue.
3. Hover your mouse pointer over the image name for processes, and notice the full

path displayed by the ToolTip.
4. Click on View, Select Columns, and add the image path.
5. Sort on the process column, and notice the tree view disappears. (You can either

display tree view or sort by any of the columns shown.) Click again to sort from Z to
A. Then click again and the display returns to tree view.

6. Deselect View, Show Processes From All Users to show only your processes.
7. Go to Options, Difference Highlight Duration, and change the value to 5 seconds.

Then launch a new process (anything), and notice the new process highlighted in
green for 5 seconds. Exit this new process, and notice the process is highlighted in
red for 5 seconds before disappearing from the display. This can be useful to see
processes being created and exiting on your system.

8. Finally, double-click on a process and explore the various tabs available from the
process properties display.

Lab Manual - OS2 Operating System Principles

13

Process Explorer Lab: Image
Information

Double click on Explorer.exe to
bring up process properties
Image tab:

Description, company name,
version (from .EXE)
Full image path
Command line used to start
process
Current directory
Parent process
User name
Start time

Where is full path.
What if process gets same pid as previous process? DO first process’ children get
forcibly adopted? No.
Do “notepad fred” to show command-line arguments. Shortcut might pass arguments.
Names used in performance tab much more logical than task manager.
Security: useful for telling what groups the process belongs to. Definitive list.
Explain privileges. Example: change system time. Double click on time applet and look
at it in process explorer. See rundll32.exe. If double-click on it and look at command-
line, last argument is timedate.cpl. Look at security and find that the time privilege is on.
Environment tab: sometimes input to scripts or apps. PATH is one of the more
important. Inherited from parent. Set DAVID=brilliant. Run paintbrush and look at it’s
environment. But not in others.
Services: talk about troubleshooting them later.

Lab Manual - OS2 Operating System Principles

25

Lab: Viewing Process Activity

1. Task Manager:
Applications tab: find the process that owns a window
(right mouse click on window title)
Process tab: add a few additional columns: Virtual
Memory size, Handle count, Thread count

Windows 2000: add I/O counters; right click on a process &
notice “end process tree” option

2. Look at process hierarchy with TLIST /T
Start an NT command prompt, then run Notepad from
command prompt, then look at TLIST /T output
Exit the command prompt and notice “orphan”
process with TLIST /T

EXPERIMENT: Viewing the Process Tree
One unique attribute about a process that most tools don’t display is the parent or
creator process ID. You can retrieve this value with the Performance tool (or
programmatically) by querying the Creating Process ID. The Tlist.exe tool (in the
Windows Debugging Tools) can show the process tree by using /t switch.
The list indents each process to show its parent/child relationship. Processes whose
parents aren’t alive are left-justified (as is Explorer.exe in the preceding example)
because even if a grandparent process exists, there’s no way to find that
relationship. Windows maintains only the creator process ID, not a link back to the
creator of the creator, and so forth.
To demonstrate the fact that Windows doesn’t keep track of more than just the
parent process ID, follow these steps: 1. Open a Command Prompt window. 2.
Type start cmd (which starts a second Command Prompt). 3. Bring up Task
Manager. 4. Switch to the second Command Prompt. 5. Type mspaint (which runs
Microsoft Paint). 6. Click the intermediate (second) Command Prompt window. 7.
Type exit. (Notice that Paint remains.) 8. Switch to Task Manager. 9. Click the
Applications tab. 10. Right-click on the Command Prompt task, and select Go To
Process. 11. Click on the Cmd.exe process highlighted in gray. 12. Right-click on
this process, and select End Process Tree. 13. Click Yes in the Task Manager
Warning message box.
The first Command Prompt window will disappear, but you should still see the
Paintbrush window because it was the grandchild of the Command Prompt process
you terminated; and because the intermediate process was terminated, there was
no link between the parent and the grandchild.

Lab Manual - OS2 Operating System Principles

28

PS Tools
Group of 12 process/system control tools

Where’d the “Ps” come from?
The UNIX process listing tool is
named “ps”
The first PsTool was a UNIX “ps”-equivalent, PsList

They all work on NT4/2000/XP/2003
They all work remotely as well as locally

Require admin rights to remote system
Can specify credentials with “-u” switch

None require manual remote software installation

All PS Tools

PsFile – lists & closes remote file opens
PsShutdown – remote shutdown, lock workstation, log off user
PsExec – run an app on a remote system
PsList – list processes & threads
PsUptime – system up time
PsInfo – display general system info
PsGetsid – displays computer or user SIDs
PsService – service process control (like SC in XP)
PsLoglist – dumps event log in text
PsSuspend – suspend a process
PsKill – kill processes
PsLoggedon – lists local and remote logon sessions
PsPassword – change local/remote passwords

Lab Manual - OS2 Operating System Principles

31

NTOSKRNL & HAL Selection
Selected at installation time

See \windows\repair\setup.log to find out which one

Can select manually at boot time with /HAL= in
boot.ini

NT distribution
CD-ROM:\i386

NTOSKRNL.EXE,
NTKRNLPA.EXE,
NTKRNLMP.EXE,
NTKRPAMP.EXE

HAL.DLL
HALACPI.DLL
…etc.

NTOSKRNL.EXE
NTKRNLPA.EXE

HAL.DLL

Boot Partition:
\windows\System32

NT Setup

(see \windows\repair\setup.log)

EXPERIMENT:
Looking at Multiprocessor-Specific Support Files on Windows 2000

You can see the files that are different for a 32-bit Windows 2000
multiprocessor system by looking at the driver details for the Computer in Device
Manager:
Open the System properties (either by selecting System from Control Panel or by right-
clicking the My Computer icon on your desktop and selecting Properties).
Click the Hardware tab.
Click Device Manager.
Expand the Computer object.
Double-click the child node underneath Computer.
Click the Driver tab.
Click Driver Details.

Lab Manual - OS2 Operating System Principles

32

NTOSKRNL & HAL Selection

Can also see by viewing the “device drivers” for the
Computer

Go to Control Panel->System – Hardware tab

Click on “Device Manager”

Click on “Computer”

Right click/Properties on “driver” for PC

Screen snapshot from:
Control Panel | System | Hardware |
Device Manager | Computer properties |
Driver Details

EXPERIMENT: Viewing the Base HALs Included with Windows
To view the HALs included with Windows, open the file Driver.cab in the appropriate
architecture-specific folder underneath \Windows\Driver Cache.
(For example, for x86 systems, the file name is \Windows\Driver
Cache\i386\Driver.cab.) Scroll down to the files beginning with “Hal” and you will see
the HAL DLLs.

Lab Manual - OS2 Operating System Principles

33

HAL Choices
To see the HAL list, do an “update driver” on the drivers
for the “Computer” and specify manual selection from the
list;

EXPERIMENT: Determining Which HAL You’re Running
There are two ways to determine which HAL you’re running:
Open the file \Windows\Repair\Setup.log, search for Hal.dll, and look at the filename
after the equals sign. This is the name of the HAL on the distribution media extracted
from Driver.cab.
In Device Manager (right-click on the My Computer icon on your desktop, select
Properties, click on the Hardware tab, and then click Device Manager), look at the
name of the “driver” under the Computer device type.

Lab Manual - OS2 Operating System Principles

34

NTOSKRNL.EXE
Executive and Kernel

HAL.DLL
Hardware Abstraction
Layer - interface to
hardware platform

BOOTVID.DLL
Boot video driver
Added in Win2000

KDCOM.DLL
Kernel debugger
communication code

Examining NTOSKRNL & HAL
Linkage

•Tool: Dependency Walker (Depends.Exe in Resource Kit & Platform SDK)
•Allows viewing of image->DLL relationships, imports, and exports

EXPERIMENT: Viewing NTOSKRNL and HAL Image Dependencies
You can view the relationship of the kernel and HAL images by examining their export

and import tables using the Dependency Walker tool (Depends.exe), which is contained
in the Windows Support Tools and the Platform SDK. To examine an image in the
Dependency Walker, select Open from the File menu to open the desired image file.
Notice that Ntoskrnl is linked against the HAL, which is in turn linked against Ntoskrnl.
(They both use functions in each other.) Ntoskrnl is also linked against Bootvid.dll, the
boot video driver that is used to implement the GUI startup screen. On Windows XP
and later, you will see an additional DLL, Kdcom.dll, in the list. This contains kernel
debugger infrastructure code that used to be part of Ntoskrnl.exe. For a detailed
description of the information displayed by this tool, see the Dependency Walker help
file (Depends.hlp).

Lab Manual - OS2 Operating System Principles

35

Kernel-Mode Device Drivers
Separate loadable modules (drivername.SYS)

Linked like .EXEs
Typically linked against NTOSKRNL.EXE and HAL.DLL
Only one version of each driver binary for both uniprocessor (UP) and multiprocessor
(MP) systems…
… but drivers call routines in the kernel that behave differently for UP vs. MP Versions

Defined in registry
Same area as Windows services (t.b.d.) - differentiated by Type value

Several types:
“ordinary”, file system, NDIS miniport, SCSI miniport (linked against port drivers), bus
drivers
More information in I/O subsystem section

To view loaded drivers, run drivers.exe
Also see list at end of output from pstat.exe – includes addresses of each driver

To update & control:
System properties->Hardware Tab->Device Manager
Computer Management->Software Environment->Drivers

EXPERIMENT: Viewing the Installed Device Drivers
You can list the installed drivers by running Computer Management. (From the Start
menu, select Programs, Administrative Tools, and then Computer Management; or from
Control Panel, open Administrative Tools and select Computer Management.) From
within Computer Management, expand System Information and then Software
Environment, and open Drivers.
Alternatively, you list the currently loaded device drivers with the Drivers utility
(Drivers.exe in the Windows 2000 resource kits) or the Pstat utility (Pstat.exe in the
Windows XP Support Tools, Windows Server 2003 Support Tools, Windows 2000
resource kits, and the Platform SDK).

Lab Manual - OS2 Operating System Principles

36

Digging Into NTOSKRNL.EXE
Exported symbols

Functions and global variables Microsoft wants visible outside the
image (e.g. used by device drivers)
About 1500 symbols exported
Ways to list:

Dependency Walker (File->Save As)
Visual C++ “link /dump /exports ntoskrnl.exe”

Global symbols
Over 9000 global symbols in XP/Server 2003 (Windows NT 4.0 was
4700)

Many variables contain values related to performance and memory
policies

Ways to list:
Visual C++: “dumpbin /symbols /all ntoskrnl.exe” (names only)
Kernel debugger: “x nt!*”

Module name of NTOSKRNL is “NT”

Peering into Undocumented Interfaces
Examining the names of the exported or global symbols in key system images (such as
Ntoskrnl.exe, Hal.dll, or Ntdll.dll) can be enlightening—you can get an idea of the kinds
of things Windows can do versus what happens to be documented and supported
today. Of course, just because you know the names of these functions doesn’t mean
that you can or should call them—the interfaces are undocumented and are subject to
change. We suggest that you look at these functions purely to gain more insight into the
kinds of internal functions Windows performs, not to bypass supported interfaces.
For example, looking at the list of functions in Ntdll.dll gives you the list of all the system
services that Windows provides to user-mode subsystem DLLs versus the subset that
each subsystem exposes. Although many of these functions map clearly to documented
and supported Windows functions, several are not exposed via the Windows API. (See
the article “Inside the Native API” from www.sysinternals.com.)
Conversely, it’s also interesting to examine the imports of Windows subsystem DLLs
(such as Kernel32.dll or Advapi32.dll) and which functions they call in Ntdll.
Another interesting image to dump is Ntoskrnl.exe—although many of the exported
routines that kernel-mode device drivers use are documented in the Windows DDK,
quite a few are not. You might also find it interesting to take a look at the import table
for Ntoskrnl and the HAL; this table shows the list of functions in the HAL that Ntoskrnl
uses and vice versa.

Lab Manual - OS2 Operating System Principles

37

Naming Convention for Internal
NT Routines

Two- or three-letter component code in beginning of function
name

Ex - General executive routine Ob - Object
management
Exp - Executive private (not exported) Io - I/O subsystem
Cc - Cache manager Se - Security
Mm - Memory management Ps - Process structure
Rtl - Run-Time Library Lsa - Security Authentication
FsRtl - File System Run-Time Lib Zw - File access, etc.

Ke - Kernel
Ki - Kernel internal (not available outside the kernel)

Hal - Hardware Abstraction Layer
READ_, WRITE_ - I/O port and register access

Executive

Kernel

HAL

Table 2-7 in Windows Internals, 4th edition lists most of the commonly used function
name prefixes for the executive components. Each of these major executive
components also uses a variation of the prefix to denote internal functions—either the
first letter of the prefix followed by an i (for internal) or the full prefix followed by a p (for
private). For example, Ki represents internal kernel functions, and Psp refers to internal
process support functions.

Lab Manual - OS2 Operating System Principles

39

Header of Executable File
Specifies Subsystem Type

Subsystem for each .exe specified in image header
see winnt.h

see Explorer / QuickView (right-click on .exe or .dll file)

or exetype image.exe (Resource Kit)

IMAGE_SUBSYSTEM_UNKNOWN 0 // Unknown subsystem
IMAGE_SUBSYSTEM_NATIVE 1 // Image doesn't require a subsystem
IMAGE_SUBSYSTEM_WINDOWS_GUI 2 // Windows subsystem (graphical app)
IMAGE_SUBSYSTEM_WINDOWS_CUI 3 // Windows subsystem (character cell)
IMAGE_SUBSYSTEM_OS2_CUI 5 // OS/2 subsystem
IMAGE_SUBSYSTEM_POSIX_CUI 7 // Posix subsystem

LAB:

5 different examples:
• exetype on ntoskrnl.exe (native),
• exetype on notepad.exe (Win32 GUI),
• exetype on cmd.exe (Win32 CUI),
• exetype on write.exe (Win 3.1),
• exetype on qbasic.exe (DOS)

Lab Manual - OS2 Operating System Principles

40

Lab: Subsytems & Images

Look at subsystem startup information in registry

Using EXETYPE, look at subsystem types for:
\windows\system32\notepad.exe,

cmd.exe, csrss.exe

EXPERIMENT: Viewing the Image Subsystem Type
You can see the image subsystem type by using either the Exetype tool in the Windows
resource kits or the Dependency Walker tool (Depends.exe) in the Windows Support
Tools and Platform SDK. For example, notice the image types for two different
Windows images, Notepad.exe (the simple text editor) and Cmd.exe (the Windows
command prompt):
C:\>exetype\Windows\system32\notepad.exe
File "\Windows\system32\notepad.exe" is of the following type:
Windows NT 32 bit machine Built for the Intel 80386 processor
Runs under the Windows GUI subsystem
C:\>exetype\Windows\system32\cmd.exe
File "\Windows\system32\cmd.exe" is ofthe followingtype:
Windows NT 32 bit machine Built for the Intel 80386 processor
Runs under the Windows character-based subsystem
This shows that Notepad is a GUI program while Cmd is a console or character-based
program. And although the output of the Exetype tool implies there are two different
subsystems for GUI and character-based programs, there is just one Windows
subsystem. Also, Windows isn’t supported on the Intel 386 processor (or the 486 for
that matter)—the text output by the Exetype program hasn’t been updated.

Lab Manual - OS2 Operating System Principles

43

Examining Open Handles:
Sysinternals Tools

Process Explorer (GUI version) or handle (character
cell version) from www.sysinternals.com

Uses a device driver to walk handle table, so doesn’t need
Global Flag set

EXPERIMENT: Viewing Open Handles
Run Process Explorer, and make sure the lower pane is enabled and configured to
show open handles. (Click on View, Lower Pane View, and then Handles). Then open
a command prompt and view the handle table for the new Cmd.exe process. You
should see an open file handle to the current directory.
If you then change the current directory with the CD command, you will see in Process
Explorer that the handle to the previous current directory is closed and a new handle is
opened to the new current directory. The previous handle is highlighted briefly in red,
and the new handle is highlighted in green. The duration of the highlight can be
adjusted by clicking Options and then Difference Highlight Duration.
Process Explorer’s differences highlighting feature makes it easy to see changes in the
handle table. For example, if a process is leaking handles, viewing the handle table with
Process Explorer can quickly show what handle or handles are being opened but not
closed. This information can assist the programmer to find the handle leak.

Lab Manual - OS2 Operating System Principles

44

Viewing Open Handles
Handle View

Suggestion: sort by type or path column
Objects of type “File” and “Key” are most interesting for general troubleshooting
By default, shows named objects

Click on Options->Show Unnamed Objects

Solve file locked errors
Use the search feature to determine what process is holding a file or directory
open
Can even close an open files (be careful!)

Understand resources used by an application
Files
Registry keys

Detect handle leaks using refresh difference highlighting
Can also view the state of synchronization objects (mutexes, semaphores,
events)

You can also display the open handle table by using the command line Handle tool from
www.sysinternals.com. For example, note the following partial output of Handle
examining the handle table for a Cmd.exe process before and after changing the
directory:
C:\>handle -p cmd.exe
Handlev 2.2 Copyright(C)1997-2004 MarkRussinovich
Sysinternals - www.sysinternals.com
--
cmd.exe pid:3184BIGDAVID\dsolomon

b0:File C:\
C:\>cd windows
C:\WINDOWS>handle -p cmd.exe
Handlev 2.2 Copyright(C)1997-2004 MarkRussinovich
Sysinternals - www.sysinternals.com
--
cmd.exe pid:3184BIGDAVID\dsolomon

b4:File C:\WINDOWS

Lab Manual - OS2 Operating System Principles

45

Process Explorer Lab: Handles
1. Run Microsoft Word
2. In Word, type some text and save file as

“c:\test.doc” (don’t close it – leave Word open)
3. From a command prompt type:

“del c:\test.doc”
(should get file locked)

4. In ProcExp, hit F5 and then use Search to find
new handle to test.doc

5. In Word, close the file (leave Word running)
6. In ProcExp, hit F5 and see handle closed to file (in

red)

EXPERIMENT: Creating the Maximum Number of Handles
The test program Testlimit from www.sysinternals.com/windowsinternals.shtml has an

option to open handles to an object until it cannot open any more handles. You can
use this to see how many handles can be created in a single process on your
system. Because handle tables are allocated from paged pool, you might run out of
paged pool before you hit the maximum number of handles that can be created in a
single process.

To see how many handles you can create on your system, follow these steps:
1. Download the Testlimit zip file from the link just mentioned, and unzip it into a

directory.
2. Run Process Explorer, and click View and then System Information. Notice the

current and maximum size of paged pool. (To display the maximum pool size values,
Process Explorer must be configured properly to access the symbols for the kernel
image, Ntoskrnl.exe.) Leave this system information display running so that you can
see pool utilization when you run the Testlimit program.

3. Open a command prompt.
4. Run the Testlimit program with the “-h” switch (do this by typing testlimit –h). When

Testlimit fails to open a new handle, it will display the total number of handles it was
able to create. If the number is less than approximately 16 million, you are probably
running out of paged pool before hitting the theoretical per-process handle limit.

5. Close the command-prompt window; doing this will kill the Testlimit process, thus
closing all the open handles.

Lab Manual - OS2 Operating System Principles

46

Viewing Open Handles with Kernel
Debugger

lkd> !handle 0 f 9e8 file

processor number 0
Searching for Process with Cid == 9e8
Searching for handles of type file

PROCESS 82ce72d0 SessionId: 0 Cid: 09e8 Peb: 7ffdf000 ParentCid: 06ec

DirBase: 06602000 ObjectTable: e1c879c8 HandleCount: 430.
Image: POWERPNT.EXE

…

0280: Object: 82c5e230 GrantedAccess: 00120089

Object: 82c5e230 Type: (82fdde70) File
ObjectHeader: 82c5e218

HandleCount: 1 PointerCount: 1

Directory Object: 00000000 Name:
\slides\ntint\new\4-systemarchitecture.ppt {HarddiskVolume1}

If looking at a dump, use !handle in Kernel
Debugger (see help for options)

EXPERIMENT: Viewing the Handle Table with the Kernel Debugger
The !handle command in the kernel debugger takes three arguments:

!handle <handleindex><flags><processid>
The handle index identifies the handle entry in the handle table. (Zero means display all
handles.) The first handle is index 4, the second 8, and so on. For example, typing
!handle 4 will show the first handle for the current process. The flags you can specify
are a bitmask, where bit 0 means display only the information in the handle entry, bit 1
means display free handles (not just used handles), and bit 2 means display
information about the object that the handle refers to.
The following command displays full details about the handle table for process ID
0x408:
kd> !handle0 7408
processor number0
Searching for Process with Cid==408
PROCESS 865f0790 SessionId:0Cid:0408 Peb:7ffdf000 ParentCid: 01dc

DirBase:04fd3000 ObjectTable: 856ca888 TableSize: 21.
Image: i386kd.exe

Handle Table at e2125000 with 21 Entries in use
0000:free handle
0004:Object: e20da2e0 GrantedAccess:000f001f
Object: e20da2e0 Type:(81491b80)Section

ObjectHeader: e20da2c8
HandleCount:1 PointerCount:1

0008:Object: 80b13330 GrantedAccess:00100003
Object: 80b13330 Type:(81495100)Event

ObjectHeader: 80b13318
HandleCount:1 PointerCount:1

Lab Manual - OS2 Operating System Principles

48

Lab: Causing a Pool Leak
Run NotMyFault and select
“Leak Pool”
(available from

http://www.sysinternals.com
/files/notmyfault.zip)
Allocates paged pool buffers
and doesn’t free them
Stops leaking when you
select “Stop Leaking”

EXPERIMENT: Troubleshooting a Pool Leak
In this experiment, you will fix a real paged pool leak on your system so that you

can put to use the techniques described in the previous section to track down
the leak. The leak will be generated by the NotMyFault tool, which you can
download from www.sysinternals.com/windowsinternals.shtml.

When you run NotMyFault.exe, it loads a device driver Myfault.sys and presents
the following dialog box:

1. Click the Leak Pool button. This causes NotMyFault to begin sending requests
to the Myfault device driver to allocate paged pool. NotMyFault will continue to
do this until you click the Stop Leaking button. Note that the paged pool is not
released even when you close the program; the pool is permanently leaked
until you reboot the system.

2. While the pool is leaking, first open Task Manager and click on the
Performance tab. You should notice Paged Pool climbing. You can also check
this with Process Explorer’s System Information display. (Click on Show and
then System Information.)

3. To determine the pool tag that is leaking, run Poolmon and press the “b” key to
sort by the number of bytes. Press “p” twice so that Poolmon is showing only
paged pool. You should notice the pool tag “Leak” climbing to the top of the
list. -- Press Stop Leaking !

4. Run Strings (from www.sysinternals.com) to look for driver binaries that
contain the pool tag “Leak”:

Strings \windows\system32\drivers*.sys | findstrLeak

Lab Manual - OS2 Operating System Principles

49

Understanding Pool Usage

Three options:

1.Poolmon (in Support Tools and Device
Driver Kit)

2.Kernel Debugger !Poolused command

3.Driver Verifier (in Windows 2000 and later)

EXPERIMENT: Determining the Maximum Pool Sizes
Because paged and nonpaged pool represent a critical system resource, it is important
to know when you’re nearing the maximum size computed for your system so that you
can determine whether you need to override the default maximum with the appropriate
registry values. The pool-size performance counters report only the current size,
however, not the maximum size.
So you don’t know when you’re reaching the limit until you’ve exhausted pool. (As
noted earlier, future versions of Windows might support dynamically sized pools.
Therefore, the need to check the pool maximums might no longer be necessary in the
future.) You can obtain the pool maximums by using either Process Explorer or live
kernel debugging. To view pool maximums with Process Explorer, click on View,
System Information.

Lab Manual - OS2 Operating System Principles

51

Troubleshooting Pool Leaks With
Poolmon

Once you find pool tag that is leaking, need to find
which driver is creating the tag
1. Try looking up in Windows Debugging Tools subfolder

\triage\pooltag.txt
May not be there if 3rd party driver

2. If not, run Strings (from Sysinternals) on all drivers:
strings \windows\system32\drivers*.sys | findstr

Xyzz

Or, use new Poolmon in 2003 DDK to generate local
pool tags

Poolmon -c will create a “localtag.txt” (if not present)
Scans binaries of loaded drivers for pool tags

Still missed drivers that are loaded but deleted

To determine the pool tag that is leaking, run Poolmon and press the “b” key to sort by
the number of bytes.
Press “p” twice so that Poolmon is showing only paged pool. You should notice the
pool tag “Leak” (our victim) climbing to the top of the list. (Poolmon shows changes to
pool allocations by highlighting the lines that change.)

Lab Manual - OS2 Operating System Principles

56

Identifying System Threads:
Process Explorer

With Process Explorer:

Double click on System
process

Go to Threads tab – sort
by CPU time

As explained before,
threads run between clock
ticks (or at high IRQL) and
thus don’t appear to run

Sort by context switch delta
column

EXPERIMENT: Mapping a System Thread to a Device Driver
In this experiment, we’ll see how to map CPU activity in the System process to the

responsible system thread (and the driver it falls in) generating the activity. This is
important because when the System process is running, you must go to the thread
granularity to really understand what’s going on. For this experiment, we will
generate system thread activity by generating file server activity on your machine.
(The file server driver, Srv.sys, creates system threads to handle inbound requests
for file I/O. See Chapter 13 for more information on this component.)

1. Open a command prompt.
2. Do a directory listing of your entire C drive using a network path to access your C

drive. For example, if your computer name is COMPUTER1, type “dir
\\computer1\c$ /s”. (The /s switch lists all subdirectories.)

3. Run Process Explorer, and double-click on the System process.
4. Click on the Threads tab.
5. Sort by the CSwitch Delta (context switch delta) column. You should see one or

more threads in Srv.sys running.
If you see a system thread running and you are not sure what the driver is, press the

Module button, which will bring up the file properties.

Lab Manual - OS2 Operating System Principles

57

System Threads Lab

1. Generate network file access activity, for
example:

“dir \\computername\c$ /s”
• System process should be consuming CPU

time
2. Open System process process properties
3. Go to Threads tab
4. Sort by CPU time and find thread(s) running
5. Determine what driver these are in

EXPERIMENT: Identifying System Threads in the System Process
You can see that the threads inside the System process must be kernel-mode system
threads because the start address for each thread is greater than the start address of
system space (which by default begins at 0x80000000, unless the system was booted
with the /3GB Boot.ini switch). Also, if you look at the CPU time for these threads, you’ll
see that those that have accumulated any CPU time have run only in kernel mode.
To find out which driver created the system thread, look up the start address of the
thread (which you can display with Pviewer.exe) and look for the driver whose base
address is closest to (but before) the start address of the thread. Both the Pstat utility
(at the end of its output) as well as the !drivers kernel debugger command list the base
address of each loaded device driver.
To quickly find the current address of the thread, use the !stacks 0 command in the
kernel debugger. Here is sample output from a live system (using LiveKd):

Lab Manual - OS2 Operating System Principles

58

Identifying System Threads: User-
Mode Tools

To really understand what’s going on, must find
which driver a thread “belongs to”

With standard user-mode tools:
1. PerfMon: monitor %Processor time for each thread in

System process & determine which thread(s) are
running

2. Pviewer: get “Start address” (address of thread
function) of running thread(s)

3. Pstat: find which driver thread start address falls in
Look for what driver starts near the thread start address

EXPERIMENT: Viewing the Real User Start Address for Windows Threads
The fact that each Windows thread begins execution in a system-supplied function (and
not the user-supplied function) explains why the start address for thread 0 is the same
for every Windows process in the system (and why the start addresses for secondary
threads are also the same).
The start address for thread 0 in Windows processes is the Windows start-of-process
function; the start address for any other threads would be the Windows start-of-thread
function. To see the user-supplied function address, use the Tlist utility in the Windows
Support Tools. Type tlist process-name or tlist process-id to get the detailed process
output that includes this information. For example, compare the thread start addresses
for the Windows Explorer process as reported by Pstat (in the Platform SDK) and Tlist:
C:\> pstat
pid:3f8 pri:8 Hnd: 329Pf: 80043Ws: 4620K explorer.exe

tid pri CtxSwtch StrtAddr UserTime KernelTime State
7c 9 16442 77E878C10:00:01.241 0:00:01.251 Wait:UserRequest
42c 11 157888 77E92C500:00:07.110 0:00:34.309 Wait:UserRequest
44c 8 6357 77E92C500:00:00.070 0:00:00.140 Wait:UserRequest
1cc 8 3318 77E92C500:00:00.030 0:00:00.070 Wait:DelayExecution

The start address of thread 0 reported by Pstat is the internal Windows start-of-process
function; the start addresses for threads 1 through 3 are the internal Windows start-
ofthread functions. Tlist, on the other hand, shows the user-supplied Windows start
address (the user function called by the internal Windows start function).

Lab Manual - OS2 Operating System Principles

59

Identifying System Threads: Kernel
Debugger

With Kernel Debugger:
ln (“List Near”) <startaddress> will give name of driver and function

Use !process or !thread to see kernel stack

lkd> ln 8061adb8
(8061adb8) nt!MiModifiedPageWriter | (8061af38)
lkd> !process 4

…
THREAD 816113e0 Cid 8.50 WAIT: (Executive) KernelMode Non-Alertable

f5c67d70 NotificationTimer
80482540 SynchronizationEvent

Start Address nt!KeBalanceSetManager (0x804634e0)
Stack Init f5c68000 Current f5c67cc0 Base f5c68000 Limit f5c65000 Call 0

ChildEBP RetAddr Args to Child
f5c67cd8 8042d5a3 ffffffff ff676980 00000000 nt!KiSwapThread+0xc5
f5c67d0c 8046355e 00000002 f5c67d98 00000001 nt!KeWaitForMultipleObjects+0x266
f5c67da8 80454faf 00000000 00000000 00000000 nt!KeBalanceSetManager+0x7e
f5c67ddc 80468ec2 804634e0 00000000 00000000 nt!PspSystemThreadStartup+0x69
00000000 00000000 00000000 00000000 00000000 nt!KiThreadStartup+0x16

Lab Manual - OS2 Operating System Principles

60

Lab: Solitaire as a Service

Create a service to run Sol.exe
Sc create dumbservice binpath= c:\windows\system32\sol.exe

Start the service
Use the GUI, or type “sc start dumbservice”, or “net start..”

Quickly run Process Explorer and look at handle table
for sol.exe

Notice name of Windowstation object

Open services.msc; mark service “Allow Service to
Interact with Desktop”
Start the service again and in Process Explorer, look at
handle table for sol.exe

Notice name of Windowstation object

SrvAny Tool
If you have a program that you want to run as a service, you need to modify the startup
code to conform to the requirements for services outlined in this section. If you don’t
have the source code, you can use the SrvAny tool in the Windows resource kits.
SrvAny enables you to run any application as a service. It reads the path of the service
file that it must load from the Parameters subkey of the service’s registry key.
When SrvAny starts, it notifies the SCM that it is hosting a particular service, and when
it receives a start command, it launches the service executable as a child process. The
child process receives a copy of the SrvAny process’s access token and a reference to
the same window station, so the executable runs within the same security account and
with the same interactivity setting as you specified when configuring the SrvAny
process. SrvAny services don’t have the share-process Type value, so each
application you install as a service with SrvAny runs in a separate process with a
different instance of the SrvAny host program.

Lab Manual - OS2 Operating System Principles

61

Service Processes

Services:

How do services interact with the system?
Must register with service control manager when started (otherwise process is
killed)
Get startup configuration parameters from Registry
Log errors to Windows 2000 Event Log
Use some form of IPC mechanism for client communication and control
Likely make use of Win2K security impersonation

Service implementation
One .EXE may have >1 service (type code in Registry indicates)

Examples of services installed by default
Event Log, Task Scheduler

Examples of add-on services
DNS, DHCP, RAS, Web server

Lab Manual - OS2 Operating System Principles

63

Mapping Services to Service
Processes

Not always a 1-to-1 mapping
Some service processes contain more than one service

Conserves virtual memory, reduces boot time

This is up to the developer of the service

Service properties displayed through Control Panel
(services.msc) show name of .EXE

But not which process the services is running in

EXPERIMENT: Listing Installed Services
To list the installed services, select Administrative Tools from Control Panel, and then
select Services. To see the detailed properties about a service, right-click on a service
and select Properties. Notice that the Path To Executable field identifies the program
that contains this service. Remember that some services share a process with other
services—mapping isn’t always one to one.

Lab Manual - OS2 Operating System Principles

64

Mapping Services to Service
Processes

Tlist /S (Debugging Tools) or Tasklist /svc (XP/2003) list
internal name of services inside service processes

Process Explorer shows more: external display name
and description

EXPERIMENT: Viewing Service Details Inside Service Processes
Process Explorer highlights processes hosting one service or more. (You can configure
this by selecting the Configure Highlighting entry in the Options menu.) If you double-
click on a service-hosting process, you will see a Services tab that lists the services
inside the process: the name of the registry key that defines the service, the display
name seen by the administrator, and the description text for that service (if present).

Lab Manual - OS2 Operating System Principles

65

Lab: Viewing Service Processes

1. Open a command prompt

2. Type “tasklist /svc”

3. Find the Svchost.exe process with the most services
inside it

4. In Process Explorer, double click on that Svchost.exe
process

5. Click on Services tab

6. Notice extra details about each service displayed by
Process Explorer

EXPERIMENT: Viewing Services Running Inside Processes
The Process Explorer utility that you can download from www.sysinternals.com shows
detailed information about the services running with processes. Run Process Explorer
and view Services tabs on the process properties dialog box for the following
processes: Services.exe, Lsass.exe, and Svchost.exe. Several instances of SvcHost
will be running on your system, and you can see the account in which each is running
by adding the Username column to the Process Explorer display or by looking at the
Username field on the Image tab of a process’s Process Properties dialog box.
The information displayed by Process Explorer includes the service name, display
name, and service description, if it has one, which Process Explorer shows beneath the
service list when you select a service.

Lab Manual - OS2 Operating System Principles

67

Services Infrastructure
Windows 2000 introduced generic Svchost.exe

Groups services into fewer processes
Improves system startup time
Conserves system virtual memory

Not user-configurable as to which services go in which processes
3rd parties cannot add services to Svchost.exe processes

Windows XP/2003 have more Svchost processes due to two new less
privileged accounts for built-in services

LOCAL SERVICE, NETWORK SERVICE
Less rights than SYSTEM account

Reduces possibility of damage if system compromised

On XP/2003, four Svchost processes (at least):
SYSTEM
SYSTEM (2nd instance – for RPC)
LOCAL SERVICE
NETWORK SERVICE

Service Control Tools

Net start/stop – local system only
Sc.exe (built in to XP/2003; also in Win2000 Resource Kit)

Command line interface to all service control/configuration functions
Works on local or remote systems

Psservice (Sysinternals) – similar to SC
Other tools in Resource Kit

Instsrv.exe – install/remove services (command line)
Srvinstw.exe – install/remove services (GUI)
Why are service creation tools included in Reskit?

Because Reskit comes with several services that are not installed as
services when you install the Reskit

Lab Manual - OS2 Operating System Principles

69

Service Configuration &
Control Tools

To view & control services:
Control Panel->Administrative Tools->Services

No option to add/remove – done at install/uninstall time

Understanding Svchost.exe CPU Time Consumption

If a multi-service process or other multi-component process such
Inetinfo.exe (IIS) or Dllhost.exe (COM) is consuming CPU time, how do
you determine which service is responsible?

Need to drill down to thread granularity
Go to Threads tab in Process Explorer and sort by CPU usage

