
1

Windows Operating System Internals - by David A. Solomon and Mark E. Russinovich with Andreas Polze

Unit OS1:
Overview of Operating Systems
1.3. Windows Operating System Family -

Concepts & Tools

2

Windows Operating System Internals - by David A. Solomon and Mark E. Russinovich with Andreas Polze 2

Copyright Notice
© 2000-2005 David A. Solomon and Mark Russinovich

These materials are part of the Windows Operating
System Internals Curriculum Development Kit,
developed by David A. Solomon and Mark E.
Russinovich with Andreas Polze

Microsoft has licensed these materials from David
Solomon Expert Seminars, Inc. for distribution to
academic organizations solely for use in academic
environments (and not for commercial use)

3

Windows Operating System Internals - by David A. Solomon and Mark E. Russinovich with Andreas Polze 3

Roadmap for Section 1.3.

High-level Overview on Windows Concepts
Processes, Threads
Virtual Memory, Protection
Objects and Handles

Windows is thoroughly instrumented
Key monitoring tools
Extra resources at www.sysinternals.com

4

Windows Operating System Internals - by David A. Solomon and Mark E. Russinovich with Andreas Polze 4

Requirements and Design Goals

Provide a true 32-bit, preemptive, reentrant, virtual memory operating
system

Run on multiple hardware architectures and platforms

Run and scale well on symmetric multiprocessing systems

Be a great distributed computing platform (Client & Server)

Run most existing 16-bit MS-DOS and Microsoft Windows 3.1 applications

Meet government requirements for POSIX 1003.1 compliance

Meet government and industry requirements for operating system security
Be easily adaptable to the global market by supporting Unicode

5

Windows Operating System Internals - by David A. Solomon and Mark E. Russinovich with Andreas Polze 5

Goals (contd.)

Extensibility
Code must be able to grow and change as market requirements change.

Portability
The system must be able to run on multiple hardware architectures and must
be able to move with relative ease to new ones as market demands dictate.

Reliability and Robustness
Protection against internal malfunction and external tampering.
Applications should not be able to harm the OS or other running applications.

Compatibility
User interface and APIs should be compatible with older versions of Windows
as well as older operating systems such as MS-DOS.
It should also interoperate well with UNIX, OS/2, and NetWare.

Performance
Within the constraints of the other design goals, the system should be as fast
and responsive as possible on each hardware platform.

6

Windows Operating System Internals - by David A. Solomon and Mark E. Russinovich with Andreas Polze 6

Portability

HAL (Hardware Abstraction Layer):
support for x86 (initial), MIPS (initial), Alpha AXP, PowerPC
(NT 3.51), Itanium (Windows 2000)
Machine-specific functions located in HAL

Layered design:
architecture-specific functions located in kernel

Windows NT/2000/XP/2003 is written in C
(OS executive, utilities, drivers)
UI and graphics subsystem - written in C++
HW-specific/performance-sensitive parts:
written in assembly lang: int trap handler, context switching

7

Windows Operating System Internals - by David A. Solomon and Mark E. Russinovich with Andreas Polze 7

Windows API & Subsystems

Windows API (application programming interface):
Common programming interface to Windows NT/2000/XP,
Windows 95/98/ME and Windows CE
OS implement (different) subsets of the API
MSDN: www.microsoft.com/msdn

Windows supports multiple subsystems (APIs):
Win32 (primary), POSIX, OS/2
User space application access OS functionality via
subsystems

Subsystems define APIs, process, and file system
semantics

OS/2 used to be primary subsystem for Windows NT

Here we introduce key operating system concepts found in Windows 2000, such as
the Win32 API, processes, threads, virtual memory, kernel mode and user mode,
objects, handles, and security.
The Win32 application programming interface (API) is the primary programming
interface to the Microsoft Windows operating system family, including Windows
2000/NT/XP, Windows 95/98/ME, and Windows CE. Each operating system
implements a different subset of Win32. For the most part, Windows 2000 is a
superset of all Win32 implementations. The Win32 API refers to the base set of
functions that cover areas such as processes, threads, memory management,
security, I/O, windowing and graphics.
The specifics of which services are implemented on which platform are included in
the reference documentation for the Win32 API. This documentation is available at
msdn.microsoft.com and on the MSDN Library CD-ROMs (MSDN stands for
Microsoft Developer Network).
Although Windows 2000 was designed to support multiple programming interfaces,
Win32 is the primary, or preferred to the operating system. Win32 has this position
because, of the three environment subsystems (Win32, POSIX, and OS/2), it
provides the greatest access to the underlying Windows 20000 system services.

8

Windows Operating System Internals - by David A. Solomon and Mark E. Russinovich with Andreas Polze 8

64-bit vs. 32-bit Windows APIs

Pointers and types derived from pointer, e.g. handles,
are 64-bit long

A few others go 64, e.g. WPARAM, LPARAM, LRESULT, SIZE_T
Rest are the same, e.g., 32-bit INT, DWORD, LONG

Only five replacement APIs!
Four for Window/Class Data

Replaced by Polymorphic (_ptr) versions
Updated constants used by these APIs

One (_ptr) version for flat scroll bars properties

646432LP64UNIXes

LLP64

ILP32

Data Model

323232Win32

643232Win64

pointerlongintAPI

Win32 and
Win64 are

consistently
named the

Windows API

Every application and every operating system has an abstract data model. Many
applications do not explicitly expose this data model, but the model guides the
way in which the application's code is written. In the 32-bit programming model
(known as the ILP32 model), integer, long, and pointer data types are 32 bits in
length. Most developers have used this model without realizing it. For the history
of the Win32® API, this has been a valid (although not necessarily safe)
assumption to make.

In 64-bit Microsoft® Windows®, this assumption of parity in data type sizes is
invalid. Making all data types 64 bits in length would waste space, because most
applications do not need the increased size. However, applications do need
pointers to 64-bit data, and they need the ability to have 64-bit data types in
selected cases. These considerations led the team to select an abstract data
model called LLP64 (or P64). In the LLP64 data model, only pointers expand to 64
bits; all other basic data types (integer and long) remain 32 bits in length.

9

Windows Operating System Internals - by David A. Solomon and Mark E. Russinovich with Andreas Polze 9

Services, Functions, and Routines

Windows API functions:
Documented, callable subroutinges
CreateProcess, CreateFile, GetMessage

Windows system services:
Undocumented functions, callable from user space
NtCreateProcess is used by CreateProcess as an internal
service

Windows internal routines:
Subroutines inside the Windows executive, kernel, or HAL
Callable from kernel mode only (device driver, NT OS
components)
ExAllocatePool allocates memory on Windows system heap

10

Windows Operating System Internals - by David A. Solomon and Mark E. Russinovich with Andreas Polze 10

Services, Functions, and Routines
(contd.)

Windows services:
Processes which are started by the Service Control Manager

Example: The Schedule service supports the at-command

DLL (dynamic link library)
Subroutines in binary format contained in dynamically loadable
files

Examples: MSVCRT.DLL – MS Visual C++ run-time library

 KERNEL32.DLL – one of the Windows API libraries

11

Processes and Threads
What is a process?

Represents an instance of a running program
you create a process to run a program
starting an application creates a process

Process defined by:

Address space
Resources (e.g. open handles)
Security profile (token)

What is a thread?
An execution context within a process
Unit of scheduling (threads run, processes don’t run)
All threads in a process share the same per-process address space

Services provided so that threads can synchronize access to shared resources
(critical sections, mutexes, events, semaphores)

All threads in the system are scheduled as peers to all others, without regard
to their “parent” process

System calls
Primary argument to CreateProcess is image file name (or command line)
Primary argument to CreateThread is a function entry point address

Per-process
address space

Systemwide Address
Space

Thread

Thread

Thread

LAB: Pview

12

Windows Operating System Internals - by David A. Solomon and Mark E. Russinovich with Andreas Polze 12

Processes & Threads
Every process starts with one thread

First thread executes the program’s “main” function
Can create other threads in the same process
Can create additional processes

Why divide an application into multiple threads?
Perceived user responsiveness, parallel/background execution

Examples: Word background print – can continue to edit during print

Take advantage of multiple processors
On an MP system with n CPUs, n threads can literally run at the same time
Question: given a single threaded application, will adding a 2nd processor make it run faster?

Does add complexity
Synchronization
Scalability well is a different question…

of multiple runnable threads vs # CPUs
Having too many runnable threads causes excess context switching

13

Windows Operating System Internals - by David A. Solomon and Mark E. Russinovich with Andreas Polze 13

A Process and its Resources

Process
object

Access token

VAD VAD VAD

Virtual address space descriptors (VADs)
Handle table

Object

Object

thread thread thread

Access token

14

Windows Operating System Internals - by David A. Solomon and Mark E. Russinovich with Andreas Polze 14

Virtual Memory

32-bit address space (4 GB)
2 GB user space (per process)
2 GB operating system

64-bit address space
8192 GB user space (per process)
~6000 GB operating system

Memory manager maps virtual
onto physical memory

2 GB
User

Process
space

2 GB system
Kernel/HAL
Boot drivers

System cache
Paged pool

Nonpaged pool

Unique per process

Systemwide

Default 32-bit layout

Although 3 GB is better than 2 GB, it‘s still not enough virtual address space to map
very large (multigigabyte) databases. To address this need, Windows 2000 has a
new mechanism called Address Windowing Extension (AWE), which allows a 32-bit
application to allocate up to 64 GB of physical memory and then map views, or
windows, into its 2-GB virtual address space.

Using AWE puts the burden of mapping virtual to physical memory on the
programmer (as in the days of MS-DOS overlays). The ultimate solution to this
address space limitation is 64-bit Windows.

15

Windows Operating System Internals - by David A. Solomon and Mark E. Russinovich with Andreas Polze 15

Memory Protection Model
No user process can touch another user process address space
(without first opening a handle to the process, which means passing
through NT security)

Separate process page tables prevent this

“Current” page table changed on context switch from a thread in 1 process
to a thread in another process

No user process can touch kernel memory
Page protection in process page tables prevent this

OS pages only accessible from “kernel mode”

Threads change from user to kernel mode and back (via a secure interface)
to execute kernel code

Does not affect scheduling (not a context switch)

16

Windows Operating System Internals - by David A. Solomon and Mark E. Russinovich with Andreas Polze 16

Kernel Mode vs. User Mode

No protection for components running in kernel mode
Transition from user mode to kernel mode through
special instruction (processor changes privilege level)

OS traps this instruction and validates arguments to syscalls
Transition from user to kernel mode does not affect thread
scheduling

Performance Counters: System/Processor/Process/
Thread – Privileged Time/User time

Windows kernel is thoroughly instrumented
Hundreds of performance counters throughout the system

Performance Monitor – perfmon.exe

17

Windows Operating System Internals - by David A. Solomon and Mark E. Russinovich with Andreas Polze 17

Performance Monitor

Lab:

•Run perfmon.exe, add performance counters for privileged time/user time on
the thread/process/processor levels
•Run TaskManager.exe, display kernel times

18

Windows Operating System Internals - by David A. Solomon and Mark E. Russinovich with Andreas Polze 18

Objects and Handles

Process, thread, file, event objects in Win32 -
are mapped on NT executive objects
Object services read/write object attributes
Objects:

Human-readable names for system resources
Resource sharing among processes
Resource protection against unauthorized access

Security/Protection based on NT executive objects
2 forms of access control:

Discretionary control: read/write/access rights
Privileged access: administrator may take ownership of files

19

Windows Operating System Internals - by David A. Solomon and Mark E. Russinovich with Andreas Polze 19

Networking

Integral, application-transparent networking
services

Basic file and print sharing and using services

A platform for distributed applications
Application-level inter-process communication (IPC)

Windows provides an expandable platform for
other network components

20

Windows Operating System Internals - by David A. Solomon and Mark E. Russinovich with Andreas Polze 20

Security

Windows 2000 supports C2-level security
(DoD 5200.23-STD, December 1985)

Discretionary protection (need-to-know) for shareable system
objects (files, directories, processes, threads)
Security auditing (accountability of subjects and their actions)
Password authentication at logon
Prevention of access to un-initialized resources (memory, disk
space)

Windows NT 3.51 was formally evaluated for C2
Windows NT 4.0 SP 6a passed C2 in December 1999

Networked workstation configuration

European IT Security Criteria FC2/E3 security level

Lab:
•Use Explorer to view NTFS Access rights/ownerships, ACLs
•Passwd change: CTRL-ALT-DEL (secure login sequence)

Currently, one has to consider three major versions of the Windows 2000 file system
(NTFS versions NT 4.0, NT 4.0 SP 4, Win2000). This distinction becomes important
in multi-boot scenarios or when using NTFS on removable media. The NTFS version
used on Windows NT prior to service pack 4 cannot access media formatted with
NTFS under Windows 2000. Windows 2000, on the other hand, converts older
NTFS-formatted volumes into its own NTFS format when mounting a volume the first
time.

21

Windows Operating System Internals - by David A. Solomon and Mark E. Russinovich with Andreas Polze 21

Registry

System wide software settings: boot & configuration info
Security database
Per-user profile settings
In-memory volatile data (current hardware state)

What devices are loaded?
Resources used by devices
Performance counters are accessed through registry functions

HKEY_LOCAL_MACHINE\System\CurrentControlSet\Control
HKEY_LOCAL_MACHINE\System\CurrentControlSet\Services
HKEY_LOCAL_MACHINE\Software

Regedit.exe is the tool to view/modify registry settings

Besides the Windows 2000 registry editor (regedt32.exe), there exists another
commonly used registry editor called regedit.exe which was originally developed for
Windows 9X. Regedit.exe implements some interesting search capabilities, however,
it does not handle properly the Windows 2000-specific security database contained
in the registry.

22

Windows Operating System Internals - by David A. Solomon and Mark E. Russinovich with Andreas Polze 22

Unicode

Most internal text strings are stored/processed as 16-bit
wide Unicode strings
Windows API string functions have 2 versions

Unicode (wide) version
L“This string uses 16-bit characters“

ANSI(narrow) version
“This string uses 8-bit characters“

Generic character representation in Win32
_T (“This string uses generic characters“)

(Windows 95/98/ME have Win32 but no Unicode characters,
 Windows CE has Win32 but only Unicode characters)

23

Windows Operating System Internals - by David A. Solomon and Mark E. Russinovich with Andreas Polze 23

Tools for Viewing
Windows Internals

Tool Executable Origin
Performance Monitor PerfMon Windows 2000
Registry Editor RegEdt32 Windows 2000
Windows 2000 Diagnostics WinMSD Windows 2000
Kernel Debugger i386kd, KD,

WINDBG Platform SDK, Windows 2000 DDK
Pool Monitor poolmon Windows 2000 CD \Support\Tools
Global Flags gflags Windows 2000 CD \Support\Tools
Open Handles oh Windows 2000 Resource Kits
QuickSlice qslice Windows 2000 Resource Kits
Process Viewer pviewer, Windows 2000 CD \Support\Tools

pview Platform SDK
Process Explode pview www.reskit.com
Process Statistics pstat Platform SDK, www.reskit.com
Pool Monitor poolmon Windows 2000 CD \Support\Tools, DDK
Object Viewer WinObj Platform SDK, www.sysinternals.com
Page Fault Monitor PFMon Windows 2000 Resource Kits, Platform SDK
Service Control Tool sc Windows 2000 Resource Kits
Task (Process) List tlist Windows 2000 CD \Support\Tools

24

Windows Operating System Internals - by David A. Solomon and Mark E. Russinovich with Andreas Polze 24

Tools used to dig in
Many tools available to dig into Windows internals

Helps to see internals behavior “in action”

We’ll use these tools to explore the internals
Many of these tools are also used in the labs that you can do after
each module

Several sources of tools
Support Tools
Resource Kit Tools
Debugging Tools
Sysinternals.com

Additional tool packages with internals information
Platform Software Development Kit (SDK)
Device Driver Development Kit (DDK)

25

Windows Operating System Internals - by David A. Solomon and Mark E. Russinovich with Andreas Polze 25

Support Tools

Tools that used to be in the NT4 Resource Kit
Win2K: 40+ tools, WinXP: 70+ tools

Located on Windows OS CD in \support\tools

Not a subset of the Resource Kit
So, you have to install this and the Resource Kit

In NT4, the NT4 Server Resource Kit included the NT4
Resource Kit Support Tools

TODO: last two bullets are misleading. Better to describe the two
“support tools” packages separately.

26

Windows Resource Kit Tools
Windows 2000 Server Resource Kit Tools (Supplement 1 is latest)

Not freely downloadable
Comes with MSDN & TechNet, so most sites have it

May be legally installed on as many PCs as you want at one site
Installs fine on 2000/XP Professional (superset of 2000 Professional
Resource Kit)

Windows XP Resource Kit: no tools, just documentation
Windows Server 2003 Resource Kit Tools

Free download – visit
http://www.microsoft.com/windows/reskits/default.asp
Tool updates are at
http://www.microsoft.com/windowsserver2003/techinfo/reskit/tool
s/default.mspx

NOTE: Windows 2000 Server Resource Kit has more tools than 2003
Resource Kit (225 vs 115 .EXEs)

Many tools dropped due to lack of support
Tools are still officially unsupported

But, can send bug reports to ntreskit@microsoft.com

15: revised & updated
13h: fixed what is shipped with what
15a: removed “ignore Workstation Resource Kit” point (I like hardcopy
doc) -- see next slide
rev17: added FTP location of fixes

27

Windows Operating System Internals - by David A. Solomon and Mark E. Russinovich with Andreas Polze 27

Windows Debugging Tools

Separate package of advanced debugging tools
Installs on NT4, Win2000, XP, 2003

Download latest version from:
http://www.microsoft.com/whdc/ddk/debugging

Tools
User-mode and kernel-mode debuggers

Kd – command line interface
WinDbg – GUI interface (kernel debugging still mostly “command line”)
Allow exploring internal system state & data structures

Ntsd, Cdb – command line user-mode debugger (newer versions
than what ships with OS)
Misc other tools (some are also in Support Tools):

kill, remote, tlist, logger/logview (API logging tool), Autodump

17e: added notes about Customer Diagnostics CD being downloadable
17g5: added note about new Debugger tools release (rewritten
KD/WinDbg engine, new kernel debugger extensions, etc)

28

Windows Operating System Internals - by David A. Solomon and Mark E. Russinovich with Andreas Polze 28

Live Kernel Debugging
Useful for investigating internal system state not available from other tools

Previously, required 2 computers (host and target)
Target would be halted while host debugger in use

XP & Server 2003 support live local kernel debugging
Technically requires system to be booted /DEBUG to work correctly
You can edit kernel memory on the live system (!)
But, not all commands work

LiveKd (www.sysinternals.com)
Tricks standard Microsoft kernel debuggers into thinking they are looking at a crash dump

Works on NT4, Windows 2000, Windows XP, & Server 2003
Was originally shipped on Inside Windows 2000 book CD-ROM—now is free on Sysinternals

Commands that fail in local kernel debugging work in LiveKD:
Kernel stacks (!process, !thread)
Lm (list modules)
Can snapshot a live system (.dump)

Does not guarantee consistent view of system memory
Thus can loop or fail with access violation
Just quit and restart

29

Windows Operating System Internals - by David A. Solomon and Mark E. Russinovich with Andreas Polze 29

Sysinternals Tools

Freeware Windows internals tools from www.sysinternals.com
Written by Mark Russinovich & Bryce Cogswell (cofounders of Winternals)

Useful for developers, system administrators, and power users
Most popular: Filemon, Regmon, Process Explorer

Generated via reverse engineering (no source access)
Require no installation – run them directly after downloading and
unzipping
Many tools require administrative privileges

Some load a device driver

Tools regularly updated, so make sure to check for updated versions
Copy of Sysinternals web site on book CD is already out of date

Subscribe to free Sysinternals newsletter

rev17g4: these are integral to our presentation, so removed “i”

30

Windows Operating System Internals - by David A. Solomon and Mark E. Russinovich with Andreas Polze 30

Process Explorer (Sysinternals)
“Super Task Manager”

Shows full image path, command line, environment variables,
parent process, security access token, open handles, loaded DLLs
& mapped files

31

Windows Operating System Internals - by David A. Solomon and Mark E. Russinovich with Andreas Polze 31

Platform SDK
(Software Development Kit)

Contains header files, libraries, documentation, & sample code
for entire Windows “platform” API

14 separate SDKs
“Core SDK” contains core services, COM, messaging, active directory,
management, etc.

Freely downloadable from
www.microsoft.com/msdownload/platformsdk/sdkupdate

Part of MSDN Professional (or higher) subscription

Always matches operating system revision
E.g. Platform SDK revised with new release (or beta) as new APIs are added

Not absolutely required for Win32 development (because VC++
comes with the Win32 API header files), but…

VC++ headers, libs, doc won’t reflect APIs added after VC++ was mastered

Also provides a few tools (e.g. WinObj, Working Set Tuner) not
available elsewhere

15a: new slide
15b: sdk tools available on the web
15e: added note that it includes latest header files that match OS
(VC++ is always just a snapshot of whatever was current at the time)
15f: expanded on the above point in the slide text
rev17: SDK no longer available for free download (only to subscribers)
rev17jeh: we should put winobj, process walker, etc., on the CD we
pass around.
Rev17a: agree (you and I have yet to agree on the CD contents)
17g: NOTE: for example, vc6’s headers and libs definitetly do not
include APIs new with win2k!
17g5: noted that SDK is freely downloadable (again)

32

Windows Operating System Internals - by David A. Solomon and Mark E. Russinovich with Andreas Polze 32

Sources of Information

Windows NT Resource Kits

Platform SDK and Windows NT DDK
MSDN Development Platform

Knowledge Base at www.microsoft.com

TechNet CD-ROM edition

Free Builds and Checked Builds
Kernel Debuggers

I386KD.EXE (command line)
WINDBG.EXE (GUI) with platform SDK

