
AP 9/01

Unit 9: Windows 2000 Networking

9.3. Microsoft-specific extensions to Sockets;
NetBIOS (Wnet) API

AP 9/01

Microsoft-specific Extensions
to Berkeley Sockets

• Tailored to the message-passing environment of
windows

• WSA – Windows Sockets Asynchronous prefix

• Roots in Windows 3.1
– Windows Sockets Committee

– # include <winsock.h>

– -link wsock32.dll

AP 9/01

Request event notification for a socket

• Request a message to the window hWnd whenever any
of the network events specified by the lEvent occurs.
– Message which should be sent is specified by the wMsg parameter.
– The socket for which notification is required is identified by s

int PASCAL FAR WSAAsyncSelect (
SOCKET s, HWND hWnd,
unsigned int wMsg, long lEvent);

Want to receive notification of socket closureFD_CLOSE

Want to receive notification of completed connectionFD_CONNECT

Want to receive notification of incoming connectionsFD_ACCEPT

Want to receive notification of the arrival of out-of-band dataFD_OOB

Want to receive notification of readiness for writingFD_WRITE

Want to receive notification of readiness for readingFD_READ

MeaningValue

AP 9/01

WSAAsyncSelect (contd.)

• Every window must have a window procedure
• Arguments to window procedure for notification window:

– wParam contains socket number
– lParam contains event code and any error that may have occured

• Event status:
WORD wError = WSADETSELECTERROR(lParam); (wError != 0 ?)

LRESULT WINAPI WndProc(HWND hWnd,
UINT msg, WPARAM wParam, LPARAM lParam);

switch(msg) {
case WM_PAINT: ...
case WM_DESTROY: ...
case FD_ACCEPT: ...
default: return(DefWindowProc(hWnd, msg, wParam, lParam));

}

AP 9/01

WSAAsynchSelect (contd.)

• Report the event:
WORD wEvent = WSAGETSELECTEVENT(lParam);

• Enabling functions reactivate WSAAsyncSelect:
For FD_READ, FD_OOB events:

– ReadFile(), read(), recv(), recvfrom() are enabling functions

For WD_WRITE events:

– WriteFile(), write(), send(), sendto() are enabling functions

• Request notification of different events:
– Call WSAAsyncSelect() again

AP 9/01

WSAAsyncSelect (contd.)

• Issuing a WSAAsyncSelect() for a socket cancels any previous
WSAAsyncSelect() for the same socket.
– For example, to receive notification for both reading and writing, the application

must call WSAAsyncSelect() with both FD_READ and FD_WRITE, as follows:

rc = WSAAsyncSelect(s, hWnd, wMsg, FD_READ ¦ FD_WRITE);

• It is not possible to specify different messages for different events.
– The following code will not work; the second call will cancel the effects of the

first, and only FD_WRITE events will be reported with message wMsg2:

rc = WSAAsyncSelect(s, hWnd, wMsg1, FD_READ);
rc = WSAAsyncSelect(s, hWnd, wMsg2, FD_WRITE);

• To cancel all notification - i.e., to indicate that the Windows
Sockets implementation should send no further messages related
to network events on the socket - lEvent should be set to zero.

AP 9/01

Use of WSAAsyncSelect
- Server Side

1. Create a socket and bind your address to it

2. Call WSAAsyncSelect():
– Request FD_ACCEPT notification

3. Call listen() – returns immediately

4. When connection request comes in:
– Notification window receives FD_ACCEPT notification

– Respond by calling accept()

5. Call WSAAsyncSelect():
– Request FD_READ | FD_OOB | FD_CLOSE notifications for socket returned

by accept()

6. Receiving FD_READ, FD_OOB notifications:
– Call ReadFile(), read(), recv(), recvfrom() to retrieve the data

7. Respond to FD_CLOSE notification by calling closesocket()

AP 9/01

Use of WSAAsyncSelect()
- Client Side

1. Create a socket

2. Call WSAAsyncSelect():
– Request FD_CONNECT notification

3. Call connect() – returns immediately

4. When FD_CONNECT notification comes in:
– Request FD_READ | FD_OOB | FD_CLOSE notification on socket

(reported in wParam)

5. When data from the server arrives:
– Notification window receives FD_READ or FD_OOB events

– Respond by calling ReadFile(), read(), recv(), or recvfrom()

– Client should be prepared for FD_CLOSE notification

AP 9/01

Get host information corresponding to
an address - asynchronous version

• type:
– The type of the address, which must

be PF_INET.

• buf:
– A pointer to the data area to receive

the hostent data. Note that this must
be larger than the size of a hostent
structure. It is recommended that you
supply a buffer of
MAXGETHOSTSTRUCT bytes.

• buflen:
– The size of data area buf above.

• hWnd:
– The handle of the window which

should receive a message when the
asynchronous request completes.

• wMsg:
– The message to be received when the

asynchronous request completes.

• addr:
– A pointer to the network address for

the host. Host addresses are stored in
network byte order.

• len:
– The length of the address, which must

be 4 for PF_INET.

HANDLE PASCAL FAR WSAAsyncGetHostByAddr (
HWND hWnd, unsigned int wMsg,
const char FAR * addr, int len, int type,
char FAR * buf, int buflen);

asynchronous version of
gethostbyaddr()

AP 9/01

WSAAsyncGetHostByAddr (contd.)

• When the asynchronous operation is complete the
application's window hWnd receives message wMsg.

• The wParam argument contains the asynchronous task
handle as returned by the original function call.
– The high 16 bits of lParam contain any error code.
– The error code may be any error as defined in winsock.h.
– An error code of zero indicates successful completion of the

asynchronous operation.

• On successful completion, the buffer supplied to the
original function call contains a hostent structure.
– To access the elements of this structure, the original buffer address

should be cast to a hostent structure pointer and accessed as
appropriate.

AP 9/01

Get host information corresponding to
a hostname - asynchronous version

• hWnd:
– The handle of the window which should receive a message when the

asynchronous request completes.

• wMsg:
– The message to be received when the asynchronous request completes.

• Name:
– A pointer to the name of the host.

• Buf:
– A pointer to the data area to receive the hostent data. It is recommended that

you supply a buffer of MAXGETHOSTSTRUCT bytes.

• Buflen:
– The size of data area buf above.

HANDLE PASCAL FAR WSAAsyncGetHostByName (
HWND hWnd, unsigned int wMsg,
const char FAR * name,
char FAR * buf, int buflen);

asynchronous version of
gethostbyname()

AP 9/01

Get protocol information corresponding to a
protocol name - asynchronous version

• hWnd
– The handle of the window which should receive a message when the

asynchronous request completes.

• wMsg
– The message to be received when the asynchronous request completes.

• name
– A pointer to the protocol name to be resolved.

• buf
– A pointer to the data area to receive the protoent data. (supply a buffer of

MAXGETHOSTSTRUCT bytes)

• buflen
– The size of data area buf above.

HANDLE PASCAL FAR WSAAsyncGetProtoByName (
HWND hWnd, unsigned int wMsg,
const char FAR * name, char FAR * buf, int buflen);

asynchronous version of
getprotobyname()

AP 9/01

Get protocol information corresponding to a
protocol number - asynchronous version

• hWnd
– The handle of the window which should receive a message when the

asynchronous request completes.

• wMsg
– The message to be received when the asynchronous request completes.

• number
– The protocol number to be resolved,

in host byte order.

• buf
– A pointer to the data area to receive the protoent data (supply a buffer of

MAXGETHOSTSTRUCT bytes)

• buflen
– The size of data area buf above.

HANDLE PASCAL FAR WSAAsyncGetProtoByNumber (
HWND hWnd, unsigned int wMsg,
int number, char FAR * buf, int buflen);

asynchronous version of
getprotobynumber()

AP 9/01

Additional Asynchronous
Socket Routines

• WSAAsyncGetServByName()

• WSAAsyncGetServByPort()

• WSACancelAsyncRequest()

• WSACancelBlockingCall()

• WSACleanup()

• WSAGetLastError()

• WSAIsBlocking()

• WSASetBlockingHook(), WSAUnhookBlockingHook()

• WSASetLastError()

• WSAStartup()

AP 9/01

WSASetBlockingHook

• Application invokes a blocking Sockets operation:
– the Windows Sockets implementation initiates the operation and then

enters a loop which is similar to the following pseudocode:

for(;;) {
/* flush messages for good user response */
while(BlockingHook()) ;
/* check for WSACancelBlockingCall() */

if(operation_cancelled()) break;
/* check to see if operation completed */

if(operation_complete()) break;
/* normal completion */

}

support those applications
which require more complex
message processing –
MDI (multiple document
interface) model

AP 9/01

WNet API

• Connection Functions
– WNetAddConnection

– WNetAddConnection2

– WNetAddConnection3

– WNetCancelConnection

– WNetCancelConnection2

– WNetConnectionDialog

– WNetConnectionDialog1

– WNetDisconnectDialog

– WNetDisconnectDialog1

– WNetGetConnection

– WNetGetUniversalName

• Enumeration Functions
– WNetCloseEnum
– WNetEnumResource
– WNetOpenEnum

• Information Functions
– WNetGetNetworkInformation
– WNetGetLastError
– WNetGetProviderName
– WNetGetResourceInformation
– WNetGetResourceParent

• User Functions
– WNetGetUser

AP 9/01

WNetAddConnection

• connect a local device to a network resource

• successful connection is persistent
– system automatically restores the connection during subsequent logon operations

– lpRemoteName
• Points to a null-terminated string that specifies the network resource to connect to.

– lpPassword
• Points to a null-terminated string that specifies the password to be used to make a

connection. This parameter is usually the password associated with the current user.

• NULL: the default password is used. If the string is empty, no password is used.

– lpLocalName
• Points to a null-terminated string that specifies the name of a local device to be

redirected, such as F: or LPT1. The case of the characters in the string is not important.

DWORD WNetAddConnection(
LPTSTR lpRemoteName, // pointer to network device name
LPTSTR lpPassword, // pointer to password
LPTSTR lpLocalName // pointer to local device name);

AP 9/01

WNetGetConnection

• retrieves the name of the network resource associated
with a local device.
DWORD WNetGetConnection(

LPCTSTR lpLocalName, // pointer to local name
LPTSTR lpRemoteName, // pointer to buffer for remote name
LPDWORD lpnLength // pointer to buffer size, in characters);

• lpLocalName
• Points to a null-terminated string that specifies the name of the local

device to get the network name for.

• lpRemoteName
• Points to a buffer that receives the null-terminated remote name

• lpnLength
• Points to a variable that specifies the size´of the buffer.

