
AP 9/01

Unit 8: File System

8.4. NTFS – Recovery Support

AP 9/01

NTFS Recovery Support

• Transaction-based logging scheme

• Fast, even for large disks

• Recovery is limited to file system data
– Use transaction processing like SQL server for user data

– Tradeoff: performance versus fully fault-tolerant file system

• Design options for file I/O & caching:
– Careful write: VAX/VMS fs, other proprietary OS fs

– Lazy write: most UNIX fs, OS/2 HPFS

AP 9/01

Careful Write Files Systems

• OS crash/power loss may corrupt file system

• Careful write file system orders write operations:
– System crash will produce predictable, non-critical inconsistencies

• Update to disk is broken in sub operations:
– Sub operations are written serially

– Allocating disk space: first write bits in bitmap indicating usage;
then allocate space on disk

• I/O requests are serialized:
– Allocation of disk space by one process has to be completed before

another process may create a file

– No interleaving sub operations of the two I/O requests

• Crash: volume stays usable; no need to run repair utility

AP 9/01

Lazy Write File Systems

• Careful file system write sacrifices speed for safety

• Lazy write improves performance by write back caching
– Modifications are written to the cache;

– Cache flush is an optimized background activity

• Less disk writes; buffer can be modified multiple times
before being written to disk

• File system can return to caller before op. is completed

• Inconsistent intermediate states on volume are ignored

• Greater risk / user inconvenience if system fails

AP 9/01

Recoverable File System

• Safety of careful write fs / performance of lazy write fs

• Log file + fast recovery procedure
– Log file imposes some overhead

– Optimization over lazy write: distance between cache flushes increased

• NTFS supports cache write-through and cache flushing
triggered by applications
– No extra disk I/O to update fs data structures necessary:

all changes to fs structure are recorded in log file which can be written
in a single operation

– In the future, NTFS may support logging for user files (hooks in place)

AP 9/01

Log File Service (LFS)

• LFS is designed to provide logging to multiple kernel
components (clients)

• Currently used only by NTFS

Cache
manager

I/O manager

NTFS driver

Access the mapped
file or flush the cache

Flush the
log file

Write/flush
the log file

Log file
service

Log the transaction

Write the
Volume updates

AP 9/01

Log File Regions

• NTFS calls LFS to read/write restart area
– Context info: location of logging area to be used for recovery

– LFS maintains 2nd copy of restart area

– Logging area: circularly reused

– LFS uses logical sequence numbers (LSNs) to identify log records

• NTFS never reads/writes transactions to log file directly

• During recovery:
– NTFS calls LFS to read forward; recorded transactions are redone

– NTFS calls LFS to read backward; undo all incompletely logged trans.

LFS restart area „infinite“ logging area

Copy 1 Copy 2 Log records

AP 9/01

Operation of the LFS/NTFS

1. NTFS calls LFS to record in (cached) log file any
transactions that will modify volume structure

2. NTFS modifies the volume (also in the cache)
3. Cache manager calls LFS to flush log file to disk

(LFS implements flushing by calling cache manager back, telling
which page to flush)

4. After cash manager flushes log file, it flushes volume
changes

-> Transactions of unsuccessful modifications can be
retrieved from log file and un-/redone

• Recovery begins automatically the first time a volume
is used after system is rebooted.

AP 9/01

Log Record Types

• Update records (series of ...)
– Most common; each record contains:
– Redo information: how to reapply on subop. of a committed trans.
– Undo information: how to reverse a partially logged sub operation

• Last record commits the transaction (not shown here)

Log file records

... T1a T1b T1c

Redo: Allocate/initialize an MFT file record
Undo: Deallocate the file record

Redo: Add the filename to the index
Undo: Remove the filename from the index

Redo: Set bits 3-9 in the bitmap
Undo: Clear bits 3-9 in the bitmap

Recovery: redo committed/undo incompletely logged transact.

AP 9/01

Log Records (contd.)

• Physical vs. logical description of redo/undo actions:
– Delete file „a.dat“ vs. Delete byte range on disk
– NTFS writes update records with physical descriptions

• NTFS writes update records (usually several) for:
– Creating a file
– Deleting a file
– Extending a file
– Truncating a file
– Setting file information
– Renaming a file
– Changing security applied to a file

• Redo/undo ops. must be idem potent
(might be applied twice)

AP 9/01

Checkpoint Records

• NTFS periodically writes a checkpoint record
– Describes, what processing would be necessary to recover a volume if

a crash would occur immediately

– How far back in the log file must NTFS go to begin recovery

– LSN of checkpoint record is stored in restart area

Log file records

... LSN 2058 LSN 2059 LSN 2060

Checkpoint record

NTFS restart

AP 9/01

Log File Full

LFS presents log file to NTFS as is it were infinitely large
• Writing checkpoint records usually frees up space
• LFS tracks several numbers:

– Available log space
– Amount of space needed to write an incoming log record and to undo the

write
– Amount of space needed to roll back all active (no committed)

transactions, should that be necessary

• Insufficient space: „Log file full“ error & NTFS exception
– NTFS prevents further transactions on files (block creation/deletion)
– Active transactions are completed or receive „log file full“ exception
– NTFS calls cache manager to flush unwritten data
– If data is written, NTFS marks log file „empty“; resets beginning of log file

• No effect on executing programs (short I/O pause)

AP 9/01

Recovery - Principles

• NTFS performs automatic recovery

• Recovery depends on two NTFS in-memory tables:
– Transaction table: keeps track of active transactions (not completed)

(sub operations of these transactions must be removed from disk)

– Dirty page table: records which pages in cache contain modifications
to file system structure that have not yet been written to disk

• NTFS writes checkpoint every 5 sec.
– Includes copy of transaction table and dirty page table

– Checkpoint includes LSNs of the log records containing the tables

Dirty page
table

Update
record

Transaction
table

Checkpoint
record

Update
record

Update
record

Begin of checkpoint operation End of checkpoint operation

Analysis pass

AP 9/01

Recovery - Passes

1. Analysis pass
• NTFS scans forward in log file from beginning of last checkpoint

• Updates transaction/dirty page tables it copied in memory

• NTFS scans tables for oldest update record of a non-committed trans.

2. Redo pass
• NTFS looks for „page update“ records which contain volume

modification that might not have been flushed to disk

• NTFS redoes these updates in the cache until it reaches end of log file

• Cache manager „lazy writer thread“ begins to flush cache to disk

3. Undo pass
• Roll back any transactions that weren't‘t committed when system failed

• After undo pass – volume is at consistent state

• Write empty LFS restart area; no recovery is needed if system fails now

AP 9/01

Undo Pass - Example

• Transaction 1 was commited before power failure
• Transaction 2 was still active

• NTFS must log undo operations in log file!
– Power might fail again during recovery;
– NTFS would have to redo its undo operations

LSN
4044

LSN
4045

LSN
4046

LSN
4047

LSN
4048

LSN
4049

„Transaction committed“ record

Redo: Allocate/Initialize an MFT file record
Undo: Deallocate the file record

Redo: Add the filename to the index
Undo: Remove the filename from the index

Redo: Set bits 3-9 in the bitmap
Undo: Clear bits 3-9 in the bitmap

Power
failure

AP 9/01

NTFS Recovery - Conclusions

• Recovery will return volume to some preexisting
consistent state (not necessarily state before crash)

• Lazy commit algorithm: log file is not immediately flushed
when a „transaction committed“ record is written
– LFS batches records;
– Flush when cache manager calls or check pointing record is written

(once every 5 sec)
– Several parallel transactions might have been active before crash

• NTFS uses log file mechanisms for error handling
• Most I/O errors are not file system errors

– NTFS might create MFT record and detect that disk is full when
allocating space for a file in the bitmap

– NTFS uses log info to undo changes and returns „disk full“ error to
caller

AP 9/01

Fault Tolerance Support

• NTFS‘ capabilities are enhanced by the fault-tolerant
volume managers FtDisk/DMIO
– Lies above hard disk drivers in the I/O system‘s layered driver scheme

– FtDisk – for basic disks

– DMIO – for dynamic disks

• Volume management capabilities:
– Redundant data storage

– Dynamic data recovery from bad sectors on SCSI disks

• NTFS itself implements bad-sector recovery for
non-SCSI disks

AP 9/01

Volume Management Features –
Spanned Volumes

Spanned Volumes:
– single logical volume composed of a maximum of 32 areas of free

space on one or more disks
– NTFS volume sets can be dynamically increased in size

(only bitmap file which stores allocation status needs to be extended)
– FtDisk/DMIO hide physical configuration of disks from file system
– Tool: Windows 2000 Disk Management MMC snap-in
– Spanned volumes were called volume sets in Windows NT 4.0

C:
(100 MB)

E:
(100 MB)

D:
(100 MB)

D:
(100 MB)

Volume set D:
occupies half of
two disks

AP 9/01

Striped Volumes

• Series of partitions, one partition per disk (of same size)

• Combined into a single logical volume

• FtDisk/DMIO optimize data storage and retrieval times
– Stripes are narrow: 64KB

– Data tends to be distributed evenly among disks

– Multiple pending read/write ops. will operate on different disks

– Latency for disk I/O is often reduced (parallel seek operations)

(150 MB) (150 MB) (150 MB)

1 2
4

3

AP 9/01

Fault Tolerant Volumes

• FtDisk/DMIO implement redundant storage schemes
– Mirror sets
– Stripe sets with parity
– Sector sparing

• Tools: Windows 2000 Disk Management MMC snap-in
 Windows NT Disk Administrator utility

• Mirrored Volumes:
– Contents of a partition on one disk are duplicated on another disk

– FtDisk/DMIO write same data to both locations

– Read operations are done simultaneously on both disks
(load balancing)

C:

C:
(mirror)

AP 9/01

RAID-5 Volumes

• Fault tolerant version of a regular stripe set

• Parity: logical sum (XOR)

• Parity info is distributed evenly over available disks

• FtDisk/DMIO reconstruct missing data by using XOR op.

parity

AP 9/01

Bad Cluster Recovery

• Sector sparing is supported by FtDisk/DMIO
– Dynamic copying of recovered data to spare sectors

– Without intervention from file system / user

– Works for certain SCSI disks

– FtDisk/DMIO return bad sector warning to NTFS

• Sector re-mapping is supported by NTFS
– NTFS will not reuse bad clusters

– NTFS copies data recovered by FtDisk/DMIO into a new cluster

• NTFS cannot recover data from bad sector without help
from FtDisk/DMIO
– NTFS will never write to bad sector (re-map before write)

AP 9/01

Bad-cluster re-mapping

NTFS filenameStandard info Security desc. Data

 Data

User file

415883

110492

213550

Number of
clusters

Starting
LCN

Starting
VCN

VCN 0 1

LCN 1355 1356 Data

VCN 3 4 5 6

LCN 1588 1589 1590 1591

 Data
VCN 2

LCN 1049

NTFS filenameStandard info Security desc. Data

113570

Number of
clusters

Starting
LCN

Starting
VCN

 Bad

VCN 0

LCN 1357

