Unit 6: Protection and Security

6.7. The OSF Distributed Computing Environment (DCE) and Kerberos

Distributed Computing Environment (OSF™ DCE)

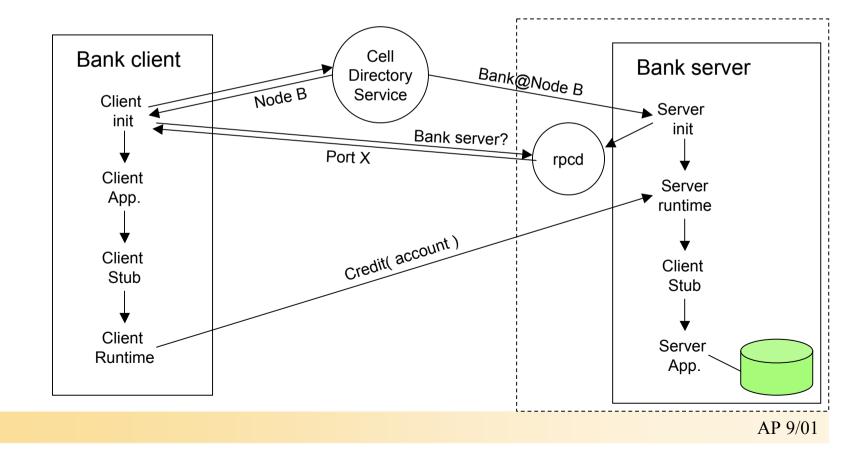
Characteristics of DCE as defined by the Open Software Foundation (OSF):

- Tools for distributed Applications
 - DCE Remote Procedure Call
 - DCE Threads
- Runtime Support for distributed Applications
 - DCE Directory Service
 - Security Service
 - Distributed Time Service
- DCE supports heterogeneous environments
- Client/Server-style Applications
- Communication via RPCs

The DCE Architecture

Applications					
DCE	DCE Diskless Support Service		Other Distributed Services (Future)		Manage-
Security Service	DCE Distributed File Service				ment
	DCE Distributed Time Service	Dir	DCE rectory ervice	Other Basic Services (Future)	
	Remote Procedure Call and Presentation Services				
DCE Threads					
Operating System and Transport Services					

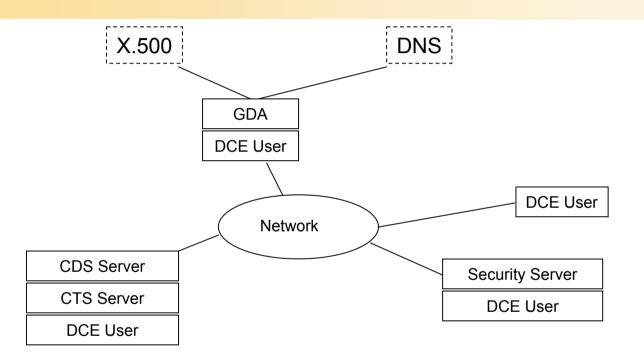
DCE Threads


- General characteristics:
 - Based on pthreads (POSIX 1003.4a)
 - Can be mapped onto OS threads
 - Wrapper-routines for non-reentrant system libraries
- Scheduling
 - Priority-based
 - FIFO, Round Robin (RR), RR without priorities (default)
- Communication/Synchronization
 - Mutual exclusion objects
 - Condition variables
 - Join routine

DCE Remote Procedure Call (RPC)

- Client/Server communication, features:
 - Message fragmentation/re-assembly
 - Byte-ordering (network data format)
 - Transparent integration with naming service
 - Based on security service (Kerberos)
- Components of DCE RPC:
 - Interface Definition Language (IDL) with compiler
 - RPC runtime library
 - Authenticated RPC
 - Name Service Independent (NSI) API interconnection with Cell Directory Service
 - RPC daemon (rpcd), control program (rpccp)
 - Generation of universally unique identifiers via uuidgen

A Distributed Application using DCE


Binding a client to a server

DCE Directory Service

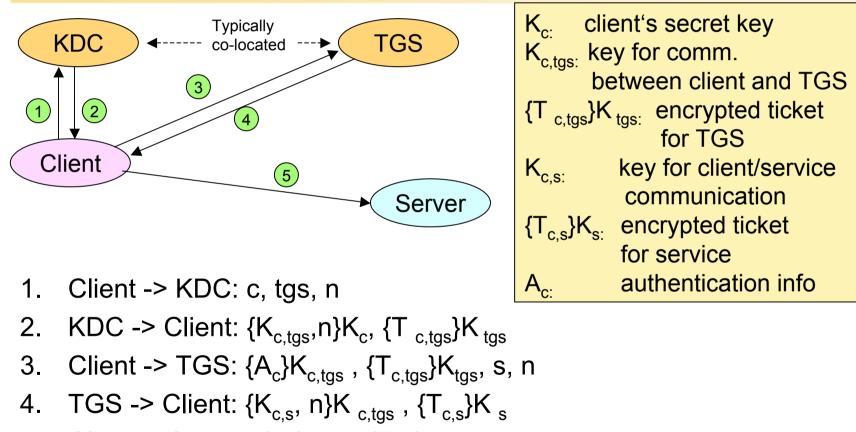
- Central information repository for distributed system
 - (attribute, value) pairs are stored
- Hierarchical structure
 - Cell Directory Service (CDS)
 - Global Directory Service (GDS)
 - Global Directory Agent (GDA)
 - Directory Service programming interface (API)
- CDS maintains data for a group of machines (cell)
- GDS implements global namespace
- GDA interconnects cells with GDS

Cell connected via GDA

- Cell may access X.500 and Domain Name Service (DNS)
- Cell administrates part of the name space

DCE Security Service

- Three main aspects:
 - Authentication
 - Secure communication
 - Authorization
- Implemented in various DCE components:
 - Authentication service (Kerberos)
 - Registry service (Maintenance of DCE security settings)
 - Privilege service (management of user credentials)
 - Access Control List (ACL) facility
 - Login Facility (initialization of environment)

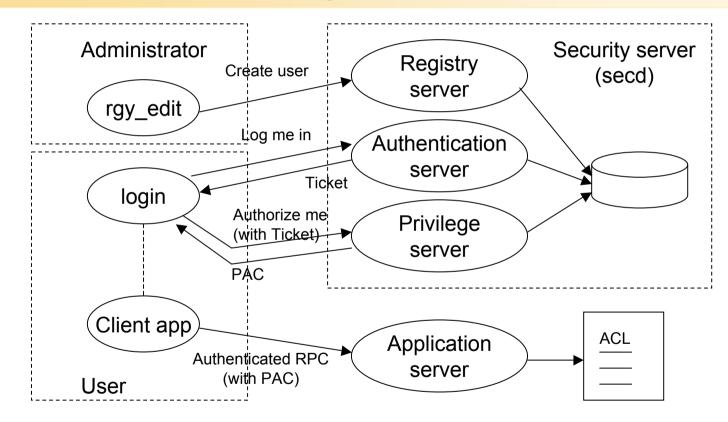

Kerberos Authentication Service

- Developed as part of MIT project Athena
- Kerberos implements an authentication procedure
 which verifies identity of communication partners
 - DES algorithm, symmetric key encryption
 - Authentication server (Kerberos Server)
 - TGS (Ticket Granting Service)
 - Client proves his identity by presenting an encrypted, service-specific ticket (T_{c,s}) when issuing a request
- Kerberos server and Ticket Granting Service (TGS) are assumed to be secure (trusted hosts)

Kerberos principles

- Kerberos requires three main steps:
 - 1. Client identifies himself against Kerberos Server, he receives a master ticket (the TGT)
 - 2. Client requests service-specific tickets and prove his identity with the TGT
 - 3. Client uses service-specific ticket to contact server
- Authentication is transparent from user's point of view
 - Modified login program acquired TGT
 - (Client) Applications transparently acquire service-specific tickets
 - TGS-issued tickets and TGT have a default lifetime of eight hours

Kerberos principles (contd.)



5. Client-> Server: $\{A_c\}K_{c,s}$, $\{T_{c,s}\}K_s$

Tickets and Authentification info

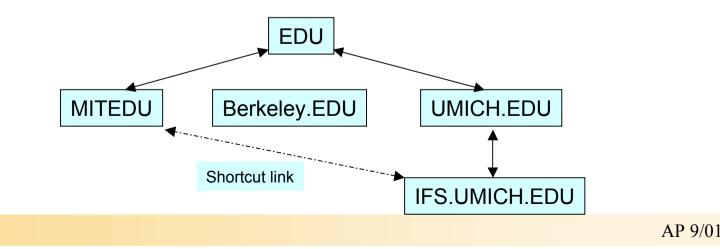
- Kerberos tickets contain the following data:
 - User name
 - Address of workstation
 - Time stamp
 - Lifetime of the ticket
 - Address of the host running the requested service
 - Session key for client/server communication
- Tickets are encrypted with the server's private key (K_s)
- Authentification info (A_c) contains the following data:
 - User name
 - Address of workstation
 - Time stamp
- Authentification infos are encrypted with the session key K_{c.s}

Interaction of DCE Security Components

PAC – Privilege Attribute Certificate – Kerberos Ticket with authentication data

AP 9/01

Problems with Kerberos


- TGS has to know private keys of all servers
 - Management problem
 - Only communication with well-known system services can be reasonably easy secured
- Server have to remember their DES keys K_s
 - Stored in file system...
- Tickets and authentication info contain time stamps
 - Network-wide clock synchronization required
 - Clock synchronization requires secure comm...
 - Diskless machines are problematic (boot phase)

Kerberos Version 5

- Encryption algorithms in separate software modules
- Keys are typed
 - Can be re-used for different encryption algorithms
- Network addresses may have arbitrary formats
 - Server may specify all supported protocols/addresses in ticket
- Network data format and encryption are standardized
 - ASN.1 format (ISO 8824), no special format for multi-byte data
 - Encryption based on (ISO 8825)
- Tickets contain plaintext section
 - Server may support multiple personalities, actual role is chosen on plaintext info
- Tickets carry starting time and expiration time

Inter-realm support

- Multiple name-spaces communicate in a hierarchy which is based on domain names
 - Inter-real keys allow for interoperability
 - KDC issues tickets for neighbor name spaces in hierarchy
 - Shortcut links are possible
 - Tickets contain path from client to server; server may refuse to act on a ticket whose path contains un-trusted hosts

Kerberos Extensions

- KDC returns special tickets on initial ticket exchange
 - Password can only changed with those special tickets
- Renewable tickets may carry two expiration dates
 - Only valid after first but before second date
- Tickets may be postdated
 - Interesting for batch processing
- Authorization data field
 - KDC copies authorization info from TGT into every newly generated ticket
 - Used by OSF DCE to implement privilege attributed certificates (PACs)
 - Windows 2000 Kerberos supports public/private key for initial authentication (to obtain TGT via user-supplied private key)