Unit 6: Protection and Security

6.1. The Security Problem

The Security Problem

- System is secure if its resources are utilized and access is as intended under all circumstances
- Security violations:
 - Unauthorized reading of data (theft of information)
 - Unauthorized modification of data
 - Unauthorized destruction of data
- Security measures:
 - Physical
 - User authorization
- Weakness at high-level security may circumvent lowlevel (operating system) measures

Authentication

- Username/password
 - Special case of keys/capabilities
 - System generated vs. User generated passwords (hard to remember/easy to guess)
 - Paired passwords: system selects one/user responds appropriately
- How to store passwords securely:
 - one-way functions
 - Shadow passwords

Program Threats

- Trojan horses
 - User programs executed by other users
 - Where to place the . in search path (current dir)?
- Trap door
 - Self-reproducing code / self-modifying programs (ACM article by Ken Thompson)
 - Code may check for specific user identifier
 - Compiler may check for specific executable (login)
 - Compiler may check name of source file and reproduce the trap door in new compiler executables
 - -> even compiler sources would show no evidence

System Threats

- Worms & Viruses
 - Nov. 2, 1988, Robert Tappan Morris, Jr., Cornell grad. stud.
 - Overwrite buffer in finger daemon and execute buffer data
 - Create /bin/sh as root
 - Use debug switch in sendmail to execute programs remotely

Threat Monitoring & Encryption

- System checks for suspicious patterns of activity
- Audit log: time/user/access type for all system objects
- Scan system periodically
 - Short / easy to guess passwords
 - Unauthorized set-UID programs
 - Unauthorized programs in system directories
 - Unexpected long running processes
 - Improper directory protections, dangerous entries in search path
 - Changes to system programs keep checksums of system programs
- D_k(E_k(m)) = m -- Data Encryption Standard (DES)
 - D_k and E_k can be computed efficiently
 - Security depends only on secrecy of the key, not on secrecy of algorithms E and D – key distribution problem