Unit 6: Protection and Security

6.1. The Security Problem

The Security Problem

- System is secure if its resources are utilized and access is as intended under all circumstances
- Security violations:
- Unauthorized reading of data (theft of information)
- Unauthorized modification of data
- Unauthorized destruction of data
- Security measures:
- Physical
- User authorization
- Weakness at high-level security may circumvent lowlevel (operating system) measures

Authentication

- Username/password
- Special case of keys/capabilities
- System generated vs. User generated passwords (hard to remember/easy to guess)
- Paired passwords: system selects one/user responds appropriately
- How to store passwords securely:
- one-way functions
- Shadow passwords

Program Threats

- Trojan horses
- User programs executed by other users
- Where to place the . in search path (current dir)?
- Trap door
- Self-reproducing code / self-modifying programs (ACM article by Ken Thompson)
- Code may check for specific user identifier
- Compiler may check for specific executable (login)
- Compiler may check name of source file and reproduce the trap door in new compiler executables
-> even compiler sources would show no evidence

System Threats

- Worms \& Viruses
- Nov. 2, 1988, Robert Tappan Morris, Jr., Cornell grad. stud.
- Overwrite buffer in finger daemon and execute buffer data
- Create /bin/sh as root
- Use debug switch in sendmail to execute programs remotely

Threat Monitoring \& Encryption

- System checks for suspicious patterns of activity
- Audit log: time/user/access type for all system objects
- Scan system periodically
- Short / easy to guess passwords
- Unauthorized set-UID programs
- Unauthorized programs in system directories
- Unexpected long running processes
- Improper directory protections, dangerous entries in search path
- Changes to system programs - keep checksums of system programs
- $D_{k}\left(E_{k}(m)\right)=m$-- Data Encryption Standard (DES)
- D_{k} and E_{k} can be computed efficiently
- Security depends only on secrecy of the key, not on secrecy of algorithms E and D - key distribution problem

