
Silberschatz, Galvin and Gagne 20027.1Operating System Concepts

Chapter 7: Process Synchronization

 The Critical-Section Problem
 Synchronization Hardware
 Semaphores
 Synchronization in Solaris 2 & Windows 2000

Silberschatz, Galvin and Gagne 20027.2Operating System Concepts

The Critical-Section Problem

 n processes all competing to use some shared data
 Each process has a code segment, called critical section,

in which the shared data is accessed.
 Problem – ensure that when one process is executing in

its critical section, no other process is allowed to execute
in its critical section.

Silberschatz, Galvin and Gagne 20027.3Operating System Concepts

Solution to Critical-Section Problem
1. Mutual Exclusion. If process Pi is executing in its critical

section, then no other processes can be executing in their
critical sections.

2. Progress. If no process is executing in its critical section
and there exist some processes that wish to enter their
critical section, then the selection of the processes that
will enter the critical section next cannot be postponed
indefinitely.

3. Bounded Waiting. A bound must exist on the number of
times that other processes are allowed to enter their
critical sections after a process has made a request to
enter its critical section and before that request is
granted.
� Assume that each process executes at a nonzero speed
� No assumption concerning relative speed of the n

processes.

Silberschatz, Galvin and Gagne 20027.4Operating System Concepts

Initial Attempts to Solve Problem

 Only 2 processes, P0 and P1
 General structure of process Pi (other process Pj)

do {
entry section

critical section
exit section

reminder section
} while (1);

 Processes may share some common variables to
synchronize their actions.

Silberschatz, Galvin and Gagne 20027.5Operating System Concepts

Algorithm 1

 Shared variables:
 int turn;

initially turn = 0
 turn - i ⇒ Pi can enter its critical section

 Process Pi
do {

while (turn != i) ;
critical section

turn = j;
reminder section

} while (1);
 Satisfies mutual exclusion, but not progress

Silberschatz, Galvin and Gagne 20027.6Operating System Concepts

Algorithm 2

 Shared variables
 boolean flag[2];

initially flag [0] = flag [1] = false.
 flag [i] = true ⇒ Pi ready to enter its critical section

 Process Pi
do {

flag[i] = true;
while (flag[j]) ;

critical section
flag [i] = false;

remainder section
} while (1);

 Satisfies mutual exclusion, but not progress requirement.

Silberschatz, Galvin and Gagne 20027.7Operating System Concepts

Algorithm 3

 Combined shared variables of algorithms 1 and 2.
 Process Pi

do {
flag [i] = true;
turn = j;
while (flag [j] && turn == j) ;

critical section
flag [i] = false;

remainder section
} while (1);

 Meets all three requirements; solves the critical-section
problem for two processes.

Silberschatz, Galvin and Gagne 20027.8Operating System Concepts

Bakery Algorithm

 Before entering its critical section, process receives a
number. Holder of the smallest number enters the critical
section.

 If processes Pi and Pj receive the same number, if i < j,
then Pi is served first; else Pj is served first.

 The numbering scheme always generates numbers in
increasing order of enumeration; i.e., 1,2,3,3,3,3,4,5...

Critical section for n processes

Silberschatz, Galvin and Gagne 20027.9Operating System Concepts

Bakery Algorithm

 Notation <≡ lexicographical order (ticket #, process id #)
 (a,b) < c,d) if a < c or if a = c and b < d
 max (a0,…, an-1) is a number, k, such that k ≥ ai for i - 0,

…, n – 1
 Shared data

boolean choosing[n];
int number[n];

 Data structures are initialized to false and 0 respectively

Silberschatz, Galvin and Gagne 20027.10Operating System Concepts

Bakery Algorithm

do {
choosing[i] = true;
number[i] = max(number[0], number[1], …, number [n – 1])+1;
choosing[i] = false;
for (j = 0; j < n; j++) {

while (choosing[j]) ;
while ((number[j] != 0) && (number[j] < number[i])) ;

}
critical section

number[i] = 0;
remainder section

} while (1);

Silberschatz, Galvin and Gagne 20027.11Operating System Concepts

Synchronization Hardware

 Test and modify the content of a word atomically
.

boolean TestAndSet(boolean &target) {
boolean rv = target;
target = true;

return rv;
}

Silberschatz, Galvin and Gagne 20027.12Operating System Concepts

Mutual Exclusion with Test-and-Set

 Shared data:
boolean lock = false;

 Process Pi
do {

while (TestAndSet(lock)) ;
critical section

lock = false;
remainder section

}

Silberschatz, Galvin and Gagne 20027.13Operating System Concepts

Synchronization Hardware

 Atomically swap two variables.

void Swap(boolean &a, boolean &b) {
boolean temp = a;
a = b;
b = temp;

}

Silberschatz, Galvin and Gagne 20027.14Operating System Concepts

Mutual Exclusion with Swap

 Shared data (initialized to false):
boolean lock;
boolean waiting[n];

 Process Pi
do {

key = true;
while (key == true)

Swap(lock,key);
critical section

lock = false;
remainder section

}

Silberschatz, Galvin and Gagne 20027.15Operating System Concepts

Semaphores

 Synchronization tool that does not require busy waiting.
 Semaphore S – integer variable
 can only be accessed via two indivisible (atomic)

operations
wait (S):

while S≤ 0 do no-op;
S--;

signal (S):
S++;

Silberschatz, Galvin and Gagne 20027.16Operating System Concepts

Critical Section of n Processes

 Shared data:
 semaphore mutex; //initially mutex = 1

 Process Pi:

do {
 wait(mutex);
 critical section

 signal(mutex);
 remainder section
} while (1);

Silberschatz, Galvin and Gagne 20027.17Operating System Concepts

Semaphore Implementation

 Define a semaphore as a record
typedef struct {
 int value;
 struct process *L;
} semaphore;

 Assume two simple operations:
 block suspends the process that invokes it.
 wakeup(P) resumes the execution of a blocked process P.

Silberschatz, Galvin and Gagne 20027.18Operating System Concepts

Implementation

 Semaphore operations now defined as
wait(S):

S.value--;
if (S.value < 0) {

add this process to S.L;
block;

}

signal(S):
S.value++;
if (S.value <= 0) {

remove a process P from S.L;
wakeup(P);

}

Silberschatz, Galvin and Gagne 20027.19Operating System Concepts

Semaphore as a General Synchronization Tool

 Execute B in Pj only after A executed in Pi
 Use semaphore flag initialized to 0
 Code:

Pi Pj
 M M
A wait(flag)

signal(flag) B

Silberschatz, Galvin and Gagne 20027.20Operating System Concepts

Deadlock and Starvation

 Deadlock – two or more processes are waiting indefinitely for
an event that can be caused by only one of the waiting
processes.

 Let S and Q be two semaphores initialized to 1
P0 P1

wait(S); wait(Q);
wait(Q); wait(S);

 M M
signal(S); signal(Q);
signal(Q) signal(S);

� Starvation – indefinite blocking. A process may never be
removed from the semaphore queue in which it is suspended.

Silberschatz, Galvin and Gagne 20027.21Operating System Concepts

Two Types of Semaphores

 Counting semaphore – integer value can range over
an unrestricted domain.

 Binary semaphore – integer value can range only
between 0 and 1; can be simpler to implement.

 Can implement a counting semaphore S as a binary
semaphore.

Silberschatz, Galvin and Gagne 20027.22Operating System Concepts

Implementing S as a Binary Semaphore

 Data structures:
binary-semaphore S1, S2;
int C:

 Initialization:
S1 = 1
S2 = 0
C = initial value of semaphore S

Silberschatz, Galvin and Gagne 20027.23Operating System Concepts

Implementing S
 wait operation

wait(S1);
C--;
if (C < 0) {

signal(S1);
wait(S2);

}
signal(S1);

 signal operation
wait(S1);
C ++;
if (C <= 0)

signal(S2);
else

signal(S1);

Silberschatz, Galvin and Gagne 20027.24Operating System Concepts

Windows 2000 Synchronization

 Uses interrupt masks to protect access to global
resources on uniprocessor systems.

 Uses spinlocks on multiprocessor systems.

 Also provides dispatcher objects which may act as wither
mutexes and semaphores.

 Dispatcher objects may also provide events. An event
acts much like a condition variable.

Silberschatz, Galvin and Gagne 20027.25Operating System Concepts

Solaris 2 Synchronization

 Implements a variety of locks to support multitasking,
multithreading (including real-time threads), and
multiprocessing.

 Uses adaptive mutexes for efficiency when protecting
data from short code segments.

 Uses condition variables and readers-writers locks when
longer sections of code need access to data.

 Uses turnstiles to order the list of threads waiting to
acquire either an adaptive mutex or reader-writer lock.

