
AP 9/011

Unit 4: Memory Management

4.1. Memory Management for Multiprogramming



AP 9/012

Memory Management Principles

• Memory is central to the operation of a modern
computer system

• Memory is a large array of words/bytes

• CPU fetches instructions from memory according to the
value of the program counter

• Instructions may cause additional loading from and
storing to specific memory addresses



AP 9/013

Address Binding

• Addresses in source
programs are symbolic

• Compiler binds symbolic to
relocatable addresses

• Linkage editor/loader binds
relocatable addresses to
absolute addresses

Binding can be done at any step:

• i.e., compiler may generate
absolute code (as for MS-
DOS .COM programs)

Source
program

Compiler or
assembler

Object 
module

other 
object 

modules

Linkage
editor

Load
module

loader

System
libraries

In-memory
binary

memory
image

dynamically
loaded
system
libraries

load
time

Compile
time

execution
time
(run time)



AP 9/014

Logical vs. Physical
Address Space

• Address generated by CPU is called a logical address
• Memory unit deals with physical addresses
• compile-time and load-time address-binding:

– Logical and physical addresses are identical

• execution-time address-binding:
– Logical addresses are different from physical addresses
– Logical addresses are also called virtual addresses
– Run-time mapping from virtual to physical addresses is done by

Memory Management Unit (MMU) – a hardware device

• The concept of a logical address space that is bound
to a different physical address space is central to
Memory Management!



AP 9/015

Memory-Management Unit (MMU)

• Hardware device that maps virtual to physical address.

• In MMU scheme, the value in the relocation register is
added to every address generated by a user process at
the time it is sent to memory.

• The user program deals with logical addresses; it never
sees the real physical addresses.



AP 9/016

Dynamic relocation using a relocation
register



AP 9/017

Dynamic Loading

• A routine is not loaded until it is called

• All routines are kept on disk in a relocatable load format

• When a routine calls another routine:
– It checks, whether the other routine has been loaded

– If not, it calls the relocatable linking loader to load desired routine

– Loader updates program‘s address tables to reflect change

– Control is passed to newly loaded routine

• Better memory-space utilization
– Unused routines are never loaded

• No special OS support required



AP 9/018

Dynamic Linking

• Similar to dynamic loading:
– Rather than loading being postponed until run time,

linking is postponed

– Dynamic libraries are not statically attached to
a program‘s object modules (only a small stub is attached)

– The stub indicates how to call (load) the appropriate library routine

• All programs may use the same copy of a library (code)
(shared libraries - .DLLs)

• Dynamic linking requires operating system support
– OS is the only instance which may locate a library in another

process‘s address space



AP 9/019

Overlays

• Size of program and data
may exceed size of memory

Concept:

• Separate program in modules

• Load modules alternatively

• Overlay driver locates
modules on disk

• Overlay modules are kept as
absolute memory images

• Compiler support required

Symbol
table

Common 
routines

Overlay
driver

Example: 
multi-pass compiler

Pass 1

Pass 2



AP 9/0110

Swapping

• Processes can temporarily be
swapped out of memory to backing
store in order to allow for execution of
other processes

• Typically, processes will be swapped
in into same memory space that they
occupied previously

• Can be implemented on the basis of
physical addresses

• Most OSes use swapping only if there
is high pressure for memory (because
of its overhead and inefficiency)

Operating
system

User
 space

Process
P1

Process
P2

Swap
out

Swap
in

Main memory

Backing store

In a multiprogramming environment:



AP 9/0111

Memory Allocation Schemes

• Main memory must accommodate OS + user processes
– OS needs to be protected from changes by user processes
– User processes must be protected from each other

• Single partition allocation:
– User processes occupy a single memory partition
– Protection can be implemented by limit and relocation register

(OS in low memory, user processes in high memory, see below)

CPU <

limit
register

relocation
register

+ memory

trap, addressing error

logical
address

no

yes physical
address

OS



AP 9/0112

Memory Allocation Schemes (contd.)

• Multiple-Partition Allocation
– Multiple processes should reside in memory simultaneously

– Memory can be divided in multiple partitions (fixed vs. variable size)
Problem: What is the optimal partition size?

• Dynamic storage allocation problem
– Multiple partitions with holes in between

– Memory requests are satisfied from the set of holes

• Which hole to select?
– First-fit: allocate the first hole that is big enough

– Best-fit: allocate the smallest hole that is big enough

– Worst-fit: allocate the largest hole (produces largest leftover hole)

– First-fit & best-fit are better than worst-fit (time & storage-wise)

– First-fit is generally faster than best-fit



AP 9/0113

Fragmentation

• External Fragmentation – total memory space exists to satisfy a
request, but it is not contiguous.

• Internal Fragmentation – allocated memory may be slightly larger
than requested memory; this size difference is memory internal to
a partition, but not being used.

• Reduce external fragmentation by compaction
– Shuffle memory contents to place all free memory together in one large block.
– Compaction is possible only if relocation is dynamic, and is done at execution

time.
– I/O problem

• Latch job in memory while it is involved in I/O.
• Do I/O only into OS buffers.



AP 9/0114

Paging

• Dynamic storage allocation algorithms for varying-sized
chunks of memory may lead to fragmentation

• Solutions:
– Compaction – dynamic relocation of processes

– Noncontiguous allocation of process memory in equally sized
pages (this avoids the memory fitting problem)

• Paging breaks physical memory into fixed-sized blocks
(called frames)

• Logical memory is broken into pages (of the same size)



AP 9/0115

Paging: Basic Method

• When a process is executed, its pages are loaded into
any available frames from backing store (disk)

• Hardware support for paging consists of a page table

• Logical addresses consist of page number and offset

CPU f dp d

Physical
memory

Logical 
address

Physical
address

p

Page table

Page number

offset

Page frames
are typically
2-4 kb



AP 9/0116

Paging Example



AP 9/0117

Paging Example



AP 9/0118

Free Frames

Before allocation After allocation



AP 9/0119

Paging: Hardware Support

• Every memory access requires access to page table
– Page table should be implemented in hardware
– Page tables exist on a per-user process basis

• Small page tables can be implemented as
set of registers
– Problem: size of physical memory, # of processes

• Page tables should be kept in memory
– Only base address of page table is kept in a special register
– Problem: speed of memory accesses

• Translation look-aside buffers (TLBs)
– Set of associative registers store recently used page table entries
– TLBs are fast, expensive, small: 8..2048 entries
– TLB must be flushed on process context switches



AP 9/0120

Associative Memory

• Associative memory – parallel search

Address translation (A´, A´´)
– If A´ is in associative register, get frame # out.

– Otherwise get frame # from page table in memory

Page # Frame #



AP 9/0121

Paging Hardware With TLB



AP 9/0122

Effective Access Time

• Associative Lookup = e time unit
• Assume memory cycle time is 1 microsecond
• Hit ratio – percentage of times that a page number is

found in the associative registers; ration related to
number of associative registers.

• Hit ratio = a
• Effective Access Time (EAT)

EAT = (1 + e) a + (2 + e)(1 – a)
= 2 + e – a



AP 9/0123

Memory Protection

• Memory protection implemented by associating
protection bit with each frame.

• Valid-invalid bit attached to each entry in the page
table:
– “valid” indicates that the associated page is in the process’

logical address space, and is thus a legal page.

– “invalid” indicates that the page is not in the process’ logical
address space.



AP 9/0124

Valid (v) or Invalid (i) Bit In A Page
Table



AP 9/0125

Page Table Structure

• Hierarchical Paging

• Hashed Page Tables

• Inverted Page Tables



AP 9/0126

Hierarchical Page Tables

• Break up the logical address space into multiple page
tables.

• A simple technique is a two-level page table.



AP 9/0127

page number page offset

pi p2 d

10 10 12

Two-Level Paging Example

• A logical address (on 32-bit machine with 4K page size) is divided
into:
– a page number consisting of 20 bits.
– a page offset consisting of 12 bits.

• Since the page table is paged, the page number is further divided
into:
– a 10-bit page number.
– a 10-bit page offset.

• Thus, a logical address is as follows:

where pi is an index into the outer page table, and p2 is the
displacement within the page of the outer page table.



AP 9/0128

Two-Level Page-Table Scheme



AP 9/0129

Address-Translation Scheme

• Address-translation scheme for a two-level 32-bit
paging architecture



AP 9/0130

Hashed Page Tables

• Common in address spaces > 32 bits.

• The virtual page number is hashed into a page table.
This page table contains a chain of elements hashing to
the same location.

• Virtual page numbers are compared in this chain
searching for a match. If a match is found, the
corresponding physical frame is extracted.



AP 9/0131

Hashed Page Table



AP 9/0132

Inverted Page Table

• One entry for each real page of memory.

• Entry consists of the virtual address of the page stored
in that real memory location, with information about the
process that owns that page.

• Decreases memory needed to store each page table,
but increases time needed to search the table when a
page reference occurs.

• Use hash table to limit the search to one — or at most a
few — page-table entries.



AP 9/0133

Inverted Page Table Architecture



AP 9/0134

Shared Pages

• Shared code
– One copy of read-only (reentrant) code shared among

processes (i.e., text editors, compilers, window systems).

– Shared code must appear in same location in the logical
address space of all processes.

• Private code and data
– Each process keeps a separate copy of the code and data.

– The pages for the private code and data can appear anywhere
in the logical address space.



AP 9/0135

Shared Pages Example



AP 9/0136

Segmentation

• What is the users‘s view of memory?
– Collection of variable-sized segments (text, data, stack, subroutines,..)

– No necessary ordering among segments

– Logical address: <segment-number, offset>

• Hardware:
– Segment table containing base address and limit for each segment

CPU s d

limit base

s

<

Trap, addressing error

+

Physical 
memory

Segment 
table

yes

no



AP 9/0137

Segmentation with Paging
- paged segmentation on the GE 645 (Multics)

• The innovative MULTICS operating system introduced:
– Logical addresses: 18-bit segment no, 16-bit offset

– (relatively) small number of 64k segments

– To eliminate fragmentation, segments are paged

– A separate page table exists for each segment

segment
length

page-table 
base

s d

>=

Trap
+

yes

no

segment table
base register

d

p d‘

+ f f d‘

physical 
memory

physical address

page table for segment s

logical address

segment table



AP 9/0138

Intel 30386 Address Translation

• The Intel 386 uses
segmentation with
paging for memory
management with a
two-level paging
scheme.



AP 9/0139

Summary

• In a multiprogrammed OS, every memory address
generated by the CPU must be checked for legality and
possibly mapped to a physical address
– Checking cannot be implemented (efficiently) in software
– Hardware support is essential

• A pair of registers is sufficient for single/multiple
partition schemes
– Paging/segmentation need mapping tables to define address maps

• Paging and segmentation can be fast
– Tables have to be implemented in fast registers (Problem: size)
– Set of associative registers (TLB) may reduce performance

degradation if tables are kept in memory

• Most modern OS combine paging and segmentation


