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Unit 4: Memory Management

4.1. Memory Management for Multiprogramming
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Memory Management Principles

• Memory is central to the operation of a modern
computer system

• Memory is a large array of words/bytes

• CPU fetches instructions from memory according to the
value of the program counter

• Instructions may cause additional loading from and
storing to specific memory addresses
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Address Binding

• Addresses in source
programs are symbolic

• Compiler binds symbolic to
relocatable addresses

• Linkage editor/loader binds
relocatable addresses to
absolute addresses

Binding can be done at any step:

• i.e., compiler may generate
absolute code (as for MS-
DOS .COM programs)
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Logical vs. Physical
Address Space

• Address generated by CPU is called a logical address
• Memory unit deals with physical addresses
• compile-time and load-time address-binding:

– Logical and physical addresses are identical

• execution-time address-binding:
– Logical addresses are different from physical addresses
– Logical addresses are also called virtual addresses
– Run-time mapping from virtual to physical addresses is done by

Memory Management Unit (MMU) – a hardware device

• The concept of a logical address space that is bound
to a different physical address space is central to
Memory Management!
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Memory-Management Unit (MMU)

• Hardware device that maps virtual to physical address.

• In MMU scheme, the value in the relocation register is
added to every address generated by a user process at
the time it is sent to memory.

• The user program deals with logical addresses; it never
sees the real physical addresses.
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Dynamic relocation using a relocation
register
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Dynamic Loading

• A routine is not loaded until it is called

• All routines are kept on disk in a relocatable load format

• When a routine calls another routine:
– It checks, whether the other routine has been loaded

– If not, it calls the relocatable linking loader to load desired routine

– Loader updates program‘s address tables to reflect change

– Control is passed to newly loaded routine

• Better memory-space utilization
– Unused routines are never loaded

• No special OS support required
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Dynamic Linking

• Similar to dynamic loading:
– Rather than loading being postponed until run time,

linking is postponed

– Dynamic libraries are not statically attached to
a program‘s object modules (only a small stub is attached)

– The stub indicates how to call (load) the appropriate library routine

• All programs may use the same copy of a library (code)
(shared libraries - .DLLs)

• Dynamic linking requires operating system support
– OS is the only instance which may locate a library in another

process‘s address space
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Overlays

• Size of program and data
may exceed size of memory

Concept:

• Separate program in modules

• Load modules alternatively

• Overlay driver locates
modules on disk

• Overlay modules are kept as
absolute memory images

• Compiler support required
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Swapping

• Processes can temporarily be
swapped out of memory to backing
store in order to allow for execution of
other processes

• Typically, processes will be swapped
in into same memory space that they
occupied previously

• Can be implemented on the basis of
physical addresses

• Most OSes use swapping only if there
is high pressure for memory (because
of its overhead and inefficiency)
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Memory Allocation Schemes

• Main memory must accommodate OS + user processes
– OS needs to be protected from changes by user processes
– User processes must be protected from each other

• Single partition allocation:
– User processes occupy a single memory partition
– Protection can be implemented by limit and relocation register

(OS in low memory, user processes in high memory, see below)
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Memory Allocation Schemes (contd.)

• Multiple-Partition Allocation
– Multiple processes should reside in memory simultaneously

– Memory can be divided in multiple partitions (fixed vs. variable size)
Problem: What is the optimal partition size?

• Dynamic storage allocation problem
– Multiple partitions with holes in between

– Memory requests are satisfied from the set of holes

• Which hole to select?
– First-fit: allocate the first hole that is big enough

– Best-fit: allocate the smallest hole that is big enough

– Worst-fit: allocate the largest hole (produces largest leftover hole)

– First-fit & best-fit are better than worst-fit (time & storage-wise)

– First-fit is generally faster than best-fit
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Fragmentation

• External Fragmentation – total memory space exists to satisfy a
request, but it is not contiguous.

• Internal Fragmentation – allocated memory may be slightly larger
than requested memory; this size difference is memory internal to
a partition, but not being used.

• Reduce external fragmentation by compaction
– Shuffle memory contents to place all free memory together in one large block.
– Compaction is possible only if relocation is dynamic, and is done at execution

time.
– I/O problem

• Latch job in memory while it is involved in I/O.
• Do I/O only into OS buffers.
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Paging

• Dynamic storage allocation algorithms for varying-sized
chunks of memory may lead to fragmentation

• Solutions:
– Compaction – dynamic relocation of processes

– Noncontiguous allocation of process memory in equally sized
pages (this avoids the memory fitting problem)

• Paging breaks physical memory into fixed-sized blocks
(called frames)

• Logical memory is broken into pages (of the same size)
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Paging: Basic Method

• When a process is executed, its pages are loaded into
any available frames from backing store (disk)

• Hardware support for paging consists of a page table

• Logical addresses consist of page number and offset
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Paging Example



AP 9/0117

Paging Example
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Free Frames

Before allocation After allocation
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Paging: Hardware Support

• Every memory access requires access to page table
– Page table should be implemented in hardware
– Page tables exist on a per-user process basis

• Small page tables can be implemented as
set of registers
– Problem: size of physical memory, # of processes

• Page tables should be kept in memory
– Only base address of page table is kept in a special register
– Problem: speed of memory accesses

• Translation look-aside buffers (TLBs)
– Set of associative registers store recently used page table entries
– TLBs are fast, expensive, small: 8..2048 entries
– TLB must be flushed on process context switches



AP 9/0120

Associative Memory

• Associative memory – parallel search

Address translation (A´, A´´)
– If A´ is in associative register, get frame # out.

– Otherwise get frame # from page table in memory

Page # Frame #
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Paging Hardware With TLB
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Effective Access Time

• Associative Lookup = e time unit
• Assume memory cycle time is 1 microsecond
• Hit ratio – percentage of times that a page number is

found in the associative registers; ration related to
number of associative registers.

• Hit ratio = a
• Effective Access Time (EAT)

EAT = (1 + e) a + (2 + e)(1 – a)
= 2 + e – a
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Memory Protection

• Memory protection implemented by associating
protection bit with each frame.

• Valid-invalid bit attached to each entry in the page
table:
– “valid” indicates that the associated page is in the process’

logical address space, and is thus a legal page.

– “invalid” indicates that the page is not in the process’ logical
address space.
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Valid (v) or Invalid (i) Bit In A Page
Table
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Page Table Structure

• Hierarchical Paging

• Hashed Page Tables

• Inverted Page Tables
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Hierarchical Page Tables

• Break up the logical address space into multiple page
tables.

• A simple technique is a two-level page table.
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page number page offset

pi p2 d

10 10 12

Two-Level Paging Example

• A logical address (on 32-bit machine with 4K page size) is divided
into:
– a page number consisting of 20 bits.
– a page offset consisting of 12 bits.

• Since the page table is paged, the page number is further divided
into:
– a 10-bit page number.
– a 10-bit page offset.

• Thus, a logical address is as follows:

where pi is an index into the outer page table, and p2 is the
displacement within the page of the outer page table.
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Two-Level Page-Table Scheme
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Address-Translation Scheme

• Address-translation scheme for a two-level 32-bit
paging architecture
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Hashed Page Tables

• Common in address spaces > 32 bits.

• The virtual page number is hashed into a page table.
This page table contains a chain of elements hashing to
the same location.

• Virtual page numbers are compared in this chain
searching for a match. If a match is found, the
corresponding physical frame is extracted.
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Hashed Page Table
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Inverted Page Table

• One entry for each real page of memory.

• Entry consists of the virtual address of the page stored
in that real memory location, with information about the
process that owns that page.

• Decreases memory needed to store each page table,
but increases time needed to search the table when a
page reference occurs.

• Use hash table to limit the search to one — or at most a
few — page-table entries.
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Inverted Page Table Architecture
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Shared Pages

• Shared code
– One copy of read-only (reentrant) code shared among

processes (i.e., text editors, compilers, window systems).

– Shared code must appear in same location in the logical
address space of all processes.

• Private code and data
– Each process keeps a separate copy of the code and data.

– The pages for the private code and data can appear anywhere
in the logical address space.



AP 9/0135

Shared Pages Example
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Segmentation

• What is the users‘s view of memory?
– Collection of variable-sized segments (text, data, stack, subroutines,..)

– No necessary ordering among segments

– Logical address: <segment-number, offset>

• Hardware:
– Segment table containing base address and limit for each segment
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Segmentation with Paging
- paged segmentation on the GE 645 (Multics)

• The innovative MULTICS operating system introduced:
– Logical addresses: 18-bit segment no, 16-bit offset

– (relatively) small number of 64k segments

– To eliminate fragmentation, segments are paged

– A separate page table exists for each segment
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Intel 30386 Address Translation

• The Intel 386 uses
segmentation with
paging for memory
management with a
two-level paging
scheme.
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Summary

• In a multiprogrammed OS, every memory address
generated by the CPU must be checked for legality and
possibly mapped to a physical address
– Checking cannot be implemented (efficiently) in software
– Hardware support is essential

• A pair of registers is sufficient for single/multiple
partition schemes
– Paging/segmentation need mapping tables to define address maps

• Paging and segmentation can be fast
– Tables have to be implemented in fast registers (Problem: size)
– Set of associative registers (TLB) may reduce performance

degradation if tables are kept in memory

• Most modern OS combine paging and segmentation


