
Windows
A Software Engineering
Odyssey

Mark Lucovsky
Distinguished Engineer
Microsoft Corporation



Agenda

History of NT
Design Goals/Culture
NT 3.1 Development vs. Windows 2000
Development
Development for the next 10 years



NT Timeline first 10 years

2/89 Coding Begins
7/93 NT 3.1 Ships
9/94 NT 3.5 Ships
5/95 NT 3.51 Ships
7/96 NT 4.0 Ships
12/99 NT 5.0 a.k.a. Windows 2000
ships



Unix Timeline first 20 years

’69 Coding Begins
’71 First Edition – PDP 11/20
’73 Fourth Edition – Rewritten in C
’75 Fifth Edition – Leaves Bell Labs, basis for
BSD 1.x
’79 Seventh Edition – One of the best
’82 System III
’84 4.2 BSD
’89 SVR4 Unification of Xenix, BSD, System V
 NT development begins



History of NT

Team forms November 1988
Six guys from DEC
One guy from Microsoft
Build from the ground up
 Advanced PC Operating System
 Designed for desktops and servers
 Secure, scalable SMP design
 All new code

Schedule: 18months (only missed our date by
3 years)



History of NT (cont.)

Initial effort targeted at Intel i860 code-named N10,
hence the name NT which doubled as N-Ten and
New Technology
Most development done on i860 simulator running on
OS/2 1.2 (took about 30 minutes)
Microsoft built a single board i860 computer code
named Dazzle including the supporting chipset and
actually ran a full kernel, memory management, etc
on the machine.
Compiler came from Metaware with weekly UUCP
updates sent to my Sun-4/200.
Microsoft wrote a PE/Coff linker as well as a graphical
cross debugger



Design Longevity
OS Code has a long lifetime
You have to base your OS on solid design
principles
You have to set goals, and not everything can
be at the top of the list
You have to design for evolution in hardware,
usage patterns, etc.,
Only way to succeed is base your design on a
solid architectural foundation
Development environments never get enough
attention…



Goal Setting

First job was to establish high level goals.
 Portability – Ability to target more than one processor, avoid

assembler, abstract away machine dependencies. We purposely
started the i386 port very late in order to avoid falling into a typical,
Microsoft, x86 centric design.

 Reliability – Nothing should be able to crash the OS. Anything that
crashes the OS is a bug. Very radical thinking inside of Microsoft
considering Win16 was cooperative multi-tasking in a single
address space, and OS/2 had many similar attributes with respect
to memory isolation

 Extensibility – Ability to extend the OS over time
 Compatibility – With DOS, OS/2, POSIX, or other popular runtimes.

This is the foundation work that allowed us to invent windows two
years into NT OS/2 development.

 Performance – All of the above are more important than raw
speed!



NT OS/2 Design Workbook

Design of executive captured in functional specs
Written by engineers, for engineers
Every functional interface was defined and reviewed
Small teams can do this efficiently,
 making this process scale is an almost impossible challenge
 Senior developers are inundated with spec reviews and the

value of their feedback becomes meaningless
 You have to spread review duties broadly, and everyone

must share the “culture”



Developing a Culture
To scale a development team, you need to
establish a culture
 Common way of evaluating designs, making

tradeoffs, etc.
 Common way of developing code and reacting to

problems (build breaks, critical bugs, etc.)
 Common way of establishing ownership of

problems

Goal setting can be the foundation for the
culture
Keeping a culture alive as a team grows is a
huge challenge



The NT Culture
Portability, Reliability, Security, and Extensibility
ingrained as the teams top priority
 Every decision was made in the context of these design

goals

Everyone owns all the code, so whenever something
is busted anyone has a right and a duty to fix it
 Works in small groups (< 150 people) where people cover

for each other
 Fails miserably in large groups

Sloppiness is not tolerated
 Great idea, but very difficult to nurture as group grows
 Abuse and intimidation gets way out of control, can’t keep

calling people stupid and expect them to listen

A successful culture has to accept that mistakes will
happen



Development Environment

NT 3.1 vs. Windows 2000
 Development Teams
 Source Code Control System
 Process Management
 Serialized Development
 Defects



Development Team

NT 3.1
 Starts very small (6), grows very slowly to 200 people
 NT Culture was commonly understood by all

Windows 2000
 Mass assimilation of other teams into the NT team
 NT 4.0 had 800 developers, Windows 2000 had 1400
 Original NT culture practiced by the old timers in the group,

but keeping the culture alive was very difficult due to growth,
physical separation, etc.
 Diluted culture leads to much conflict

 Accountability: I don’t “own” the code that is busted, see Markl
 reliability vs. new features
 64-bit portability vs. new features



Source Code Control System
(NT 3.1)

Internally developed, maintained by a non-NT
tools team
 No branch capability, but with small team, it was

not needed

10-12 well isolated source “projects”, 6M LOC
Informal project separation worked well
 minimal obscure source level dependencies

Small hard drive could easily hold entire
source tree
Developer could easily stay in synch with
changes made to the system



Source Code Control System
(Windows 2000)

Windows team takes ownership of source code control
system which at this point is on life support
Branch capability sorely needed, tree copies used as
substitute, so merging is a nightmare
180 source “projects” 29M LOC
No project separation, reaching “up and over” was very
common as developers tried to minimize what they had
to carry on their machines to get their jobs done
Full source base required about 50Gb of disk space
To keep a machine in synch was a huge chore (1 week
to setup, 2 hours per-day to synchronize)



Process Management (NT 3.1)
Safe synch period in effect for ~4 hours each
day, all other times the rule is check-in when
ready
Build lab synchs during morning safe synch
period, and starts a complete build.
 Build breaks are corrected manually during the

build process (1-2 breaks was normal)

Complete build time is 5 hours on ~486/50
Build is boot tested with some very minimal
testing before release to stress testing
 Defects corrected with incremental build fixes

4pm, stress testing on ~100 machines begins



Process Management
(Windows 2000)

Developers are not allowed to change the source tree without
explicit, email/written permission
 Build lab manually approves each check-in using a combination of

email, web, and bug tracking database
Build lab approves about 100 changes each day and manually
issues the appropriate synch and build commands
 Build breaks are corrected manually, and when they occur, all

further build processing is halted
 A developer that mistypes a build instruction can stop the build lab,

which in turn stops over 5,000 people
Complete build time is 8 hours on 4 way PIII Xeon 550 with
50Gb disk and 512k RAM
Build is boot tested and assuming we get a boot, extensive
baseline testing begins
 Testing is a mostly manual, semi-automated process
 Defects occurring in the boot or test phase must be corrected

before build is “released” for stress testing
4pm, stress testing on ~1000 machines begins



Team Size

1700

700

325

230

140

Test Team SizeDev Team SizeProduct

1400Win2k

800NT 4.0

450NT 3.51

300NT 3.5

200NT 3.1



Serialized Development
The model from NT 3.1 -> Windows 2000
All developers on team check-in to a single main line branch
Master build lab synchs to main branch and builds and releases
from that branch
Checked in defect affects everyone waiting for results



Defect Rates and Serialization
Compile time or run time bugs that occur in a
developers office only affect that developer
Once a defect is checked-in, the number of people
affected by the defect increases
Best developers are going to check-in a runtime or
compile time mistake at least twice each year
Best developers will be able to cope with a checked-
in compile time or run time break very quickly (about
20 minutes end-to-end)
As the code base gets larger, and as the team gets
larger, these numbers typically double



Defect Rates Data

10.2 hours15.340 minutes4Win2k, 1400

3.8 hours6.635 minutes3NT 4.0, 800

1.2 hours2.530 minutes2NT 3.51, 450

41 minutes1.625 minutes2NT 3.5, 300

20 minutes120 minutes2NT 3.1, 200

Total
Defect Fix Time

Defects:
Per Day

Time to Fix:
Per Defect

Defects:
Per year
Per Dev

Product
and
Team Size

With serialized development:
 Good, small teams operate efficiently
 Even the absolute best large teams are always broken, and

always serialized



Development Environment
Summary

NT 3.1
 Fast and loose development, lots of fun, lots of energy
 Few barriers to getting your work done
 Defects serialized parts of the process, but didn’t stop the

whole machine, minimal down time

Windows 2000
 Source code control system bursting at the seams
 Excessive process management serialized the entire

development process, 1 defect stops 1400 devs, 5000 team
members!

 Resources required to build a complete instance of NT were
excessive giving few developers a way to be successful



Focused Fixes
Source Code Control System
Source Code Restructuring
Make the large team work like a set of small
teams
 Windows is already organized into reasonable size

development teams
 Goal is to allow these teams to work as a team

when contributing source code changes rather
than as a group of individuals that happen to work
for the same VP
 Parallel Development, Team Level Independence

Automated Builds



Source Code Control System

New source code control system
identified 3/99 (SourceDepot)
Native branch support
Scalable, high speed, client server
architecture
New machine setup 3 hours vs. 1 week
Normal synch 5 minutes vs. 2 hours



Source Code Control System
(cont.)

Transition to SourceDepot done on LIVE
Win2k code base
Hand built SLM -> SourceDepot
migration system allowed us to keep in
synch with the old system while
transitioning to SourceDepot and
changing the source code layout



Source Code Restructuring
16 Depots for covering each major area
of source code
Organization is focused on:
 minimizing cross project dependencies to

reduce defect rate
 Sizing projects to compile in a reasonable

amount of time
 To build a project, all you need is the code

for that project, AND the public/root
project

 Cross project sharing is explicit



New Tree Layout

The new tree layout features
 Root project houses public
 15 Additional projects hang off of

the Root
 No nested projects
 All projects build independently
 Cross project dependencies

resolved via Public,
Public\internal using checked in
interfaces



Explicit Internal Interface
Sharing

The Base Project
internal interfaces

exposed here

The Admin Project
internal interfaces

exposed here



Team Level Independence
Each team determines its own check-in policy, enable
rapid, frequent check ins
Teams are isolated from mistakes made by other
teams
 When errors occur, only the team causing the error is

affected
 A build, boot, or test break only affects a small subset of the

product group

Each team has their own view of the source tree,
their own mini build lab, and builds an entire
installable build
Any developer with adequate resources can easily
duplicate a mini build lab
 build and release a completely installable Windows System



Parallel Development (cont.)

Main Build Lab Branch

Debbl’s Windows Branch

• Main branch is built by the
master build lab.

• Quality is always high because
only well tested complete group
check-ins are done here

Robs Base Branch

• Team branches have their own check-in
policy.

• Team members check-in to their branch, not
the main branch

• Each team branch has their own mini-build
lab that produces full builds for that team

Robs team checks into his
own branch without
affecting Main, or Debbl

Debbl’s team makes similar
check-ins without impacting
Rob or Main

Rob integrates build lab
changes to his tree

Rob builds resulting tree, tests tree and
then integrates to the main branch

Debbl makes a few changes then
integrates from the main build lab branch
During test, more changes are needed to
make system work well. When done,
integration into main build lab branch
occurs. During this period, robs team
continues to check-in to their branch N+1 Dev Branch

N+1 Team checks into their branch and periodically
integrates from main

QFE/SP Branch

At RTM, a QFE/SP branch is created. N+1 Branch integrates
from main, then integrates their branch into main



Parallel Development



Team Level Independence
(cont.)

Teams integrate their changes into the “main” trunk one at a
time, so there is a high degree of accountability when
something goes wrong in “main”
Build breaks will happen, but they are easily localized to the
branch level, not the main product codeline
Teams are isolated from mistakes made by other teams
 When errors occur, they affect smaller teams
 A build, boot, or test break only affects a small subset of the

windows development team
Each team has their own view of the source tree and their own
mini build lab
 I.e. Each team’s lab is enlisted in ALL projects and builds ALL

projects
 Each team needs resources able to build an NT system

Each team’s build lab builds, tests, and mini-bvt’s a complete
standalone system



Automated Builds
Build lab runs 100% hands off
10am and 10pm full synch and full build
 Build failures are auto detected and mailed to the

team
 Successful builds are automatically released with

automatic notification to the team
 Each VBL can build:

 4 platforms (x86 fre/chk, ia64 fre/chk) = 8 builds each
day, 56 each week

 No manual steps at all. 100% Hands off automatic
 7 VBLs in Win2k Group
 Majority of builds work, but failures when they occur are

isolated to a single team



Productivity Gains

Developers can easily switch from working on release
N to release N+1
Developers in one team will not be impacted by
mistakes/changes made by other teams
Developers have long, frequent checkin windows
(Base team has a 24x7 open checkin window, vs. 2-3
hour per day checkin window with manual approval
used during W2K
Source code control system is fast and reliable
Testing is done on complete builds instead of
assorted collections of private binaries
 What is in the source code control system is what is tested



How is it working?
Source code control system is working very
well
 No scaling problems, easily handling 5100 total

user enlistments and 411,000 files

Source code restructuring is working well
 No new depots added, explicit sharing between

projects still the rule

Parallel Development is working very well
 Teams feel independent and able to control their

own destiny
 Per-team serialization only occurs when a team

“reverse integrates” their changes into the main
branch



Summary

The initial NT development environment and
culture worked well for the first few years
Ten years of team and code growth forced a
major re-design of the development
environment and culture
With the new environment in place, the team
is working a lot like they did in the NT 3.1
days with a small, fast moving, development
team



Questions


