
AP 9/01

Unit 2: Windows 2000 Architecture

2.1. Structuring of the Windows 2000
Operating System

AP 9/01

Windows 2000 System Architecture
and System Mechanisms

Requirements & Design Goals

Architecture Overview

Key System Components

Trap Dispatching

Object Manager

Synchronization

Local Procedure Calls

AP 9/01

Requirements and Design Goals

• Provide a true 32-bit, preemptive, reentrant, virtual memory
operating system

• Run on multiple hardware architectures and platforms

• Run and scale well on symmetric multiprocessing systems

• Be a great distributed computing platform (Client & Server)

• Run most existing 16-bit MS-DOS and Microsoft Windows 3.1
applications

• Meet government requirements for POSIX 1003.1 compliance

• Meet government and industry requirements for operating system
security

• Be easily adaptable to the global market by supporting Unicode

AP 9/01

Goals (contd.)

• Extensibility
– Code must be able to grow and change as market requirements change.

• Portability
– The system must be able to run on multiple hardware architectures and must

be able to move with relative ease to new ones as market demands dictate.

• Reliability and Robustness
– Protection against internal malfunction and external tampering.
– Applications should not be able to harm the OS or other running applications.

• Compatibility
– User interface and APIs should be compatible with older versions of Windows

as well as older operating systems such as MS-DOS.
– It should also interoperate well with UNIX, OS/2, and NetWare.

• Performance
– Within the constraints of the other design goals, the system should be as fast

and responsive as possible on each hardware platform.

AP 9/01

Microkernel Operating Systems

• Client/server systems fall within a spectrum
– some doing very little work in kernel mode and others doing more.

• Carnegie Mellon University Mach operating system
– contemporary example of the client/server microkernel system,

– implements minimal kernel that comprises thread scheduling, message passing,
virtual memory, and device drivers

– Everything else, including various APIs, file systems, and networking, runs in
user mode.

• Commercial implementations of Mach run file system, networking,
and memory management in kernel mode

• The reason: the pure microkernel design is too slow
– Windows NT 3.51 was comparable to Mach

– Windows NT 4.0 moved significant part of Win32 subsystem (GDI, Window
Manager) into kernel

AP 9/01

Windows 2000 Architecture
(simplified)

• User mode versus kernel mode

• More crashes due to Win32 execution in kernel mode?
no ! Important user-space server would even

 crash microkernel OS

AP 9/01

Process Types (user proc.)

• System support processes:
– logon process, session manager

– Not started by the service controller

• Server processes that are Windows 2000 services:
– Event log, scheduler service

– Components of add-on apps: SQL server, exchange server

• Environment subsystems (personalities):
– Win32, POSIX, OS/2 1.2

– Subsystem DLLs (documented function -> NT service call)

• User applications (5 types):
– Win32, Windows 3.1, MS-DOS, POSIX, OS/2 1.2

AP 9/01

Kernel mode components

• NT executive: memory, process, thread mang.,
security, I/O, IPC

• NT kernel: low-level OS func – scheduling,
interrupts, exceptions, multiprocessor synch.

AP 9/01

Portability

• HAL (Hardware Abstraction Layer):
– support for x86 (initial), MIPS (initial), Alpha AXP, PowerPC (NT 3.51),

Itanium (Windows 2000)
– Machine-specific functions located in HAL

• Layered design:
– architecture-specific functions located in kernel

• Windows 2000 is written in C
– (OS executive, utilities, drivers)

• UI and graphics subsystem
– written in C++

• HW-specific/performance-sensitive parts
– written in assembly lang: int trap handler, context switching

AP 9/01

Symmetric Multiprocessing (SMP)

• No master processor
• Up to 32 PE

• W2K Pro: 2
• W2K S: 4
• W2K/AS: 8

• Modified HAL for more than 8 processors
HKLM\System\CurrentControlSet\SessionManager\LicensedProcessors

AP 9/01

SMP supported by OS

• OS code runs on every processor; preemptable
– Exception: scheduling & interrupt handling

• Multithreading; potentially simultaneous execution
• Fine-grained synchronization in kernel/device drivers
• Multithreaded server processes
• Flexible object sharing; IPC

– Shared memory, message passing

• Single version of W2K:
– SMP requires different HALs and kernels (on CD):
– NTOSKRNL.EXE – uniprocessor executive/kernel
– NTKRNLMP.EXE – multiprocessor executive/kernel (same sources)
– Selection at installation time, file is always installed as

\winnt\system32\NTOSKRNL.EXE

AP 9/01

Windows 2000 Professional vs.
Windows 2000 Server

• Same source; scheduling handled differently

• Services:
– network management and directory services: Active Directory

– Disk FT features (striping with parity and mirroring)

– Services for Macintosh: file and printer sharing, user admin

– Gateway Service for NetWare

– TCP/IP: Domain Name System (DNS) and Dynamic Host
Configuration Protocol (DHCP)

– Remote boot server for diskless MS-DOS, Win3.1, Win95 PCs

• Licensing:
– W2K Pro: 10 netw. Conn; 10 printer/file sharing conn.

AP 9/01

Key System Components

AP 9/01

Key Windows 2000 System Files

SERVICES.EXE Service controller process
WINLOGON.EXE Logon process
SMSS.EXE Session manager process
PSXSS.EXE POSIX subsystem process
OS2SS.EXE OS/2 subsystem process
CSRSS.EXE* Win32 subsystem process
NTDLL.DLL Internal support functions and system

service dispatch stubs to executive functions
KERNEL32.DLL,
USER32.DLL,
GDI32.DLL. Win32 subsystem DLLs
PSXDLL.DLL POSIX subsystem DLL
NTOSKRNL.EXE** Executive and kernel
HAL.DLL Hardware abstraction layer
WIN32K.SYS Win32 USER and GDI kernel-mode components

AP 9/01

Subsystems

• POSIX (1003.1), OS/2 (Intel only), Win32 (required)

• Executable (.exe) is linked to exactly one subsystem
– Win32 app cannot use POSIX fork (but: tlist –t)

– Subsystems can be loaded on demand

(HKLM\System\CurrentControlSet\Control\Session Manager\Subsystems)

Required
on boot

Full POSIX subsystem: Interix (from MS); GNU: www.cygnus.com

AP 9/01

App calls Subsystem

• Function is entirely implemented in user mode
– No message sent to environment subsystem process
– No Win NT executive system service called
– Examples: PtInRect(), IsRectEmpty()

• Function requires one/more calls to NT executive
– Examples: Win32 ReadFile() / WriteFile() implemented using I/O

system services NtReadFile() / NtWriteFile()

• Function requires some work in environment subsystem
process (maintain state of client app)
– Client/server request (message) to env. Subsystem (LPC facility)
– Subsystem DLL waits for reply before returning to caller

• Combinations of 2/3: CreateProcess() / CreateThread()

AP 9/01

Win32 Subsystem

• Environment subsystem process (CSRSS.EXE):
– Console (text) windows

– Creating and deleting processes and threads

– Portions of the support for 16-bit virtual DOS machine (VDM)

– Other func: GetTempFile, DefineDosDevice, ExitWindowsEx

• kernel-mode device driver (WIN32K.SYS):
– Window manager: manages screen output;

– input from keyboard, mouse, and other devices

– user messages to applications.

– Graphical Device Interface (GDI)

AP 9/01

Win32 Subsystem (contd.)

• Subsystem DLLs (such as USER32.DLL,
ADVAPI32.DLL, GDI32.DLL, and KERNEL32.DLL)
– Translate Win32 API functions into calls to NTOSKRNL.EXE and

WIN32K.SYS.

• Graphics device drivers
– graphics display drivers, printer drivers, video miniport drivers

Prior to Windows NT 4.0, the window manager and
graphics services were part of the user-mode Win32
subsystem process.

Is Windows NT Less Stable with Win32 USER and GDI in Kernel
Mode?

AP 9/01

File System
Drivers

Cache
Manager

I/O Manager

Windows NT 3.51 Architecture

Hardware

Hardware Abstraction Layer (HAL)

Microkernel

Network
Drivers

Hardware
Device Drivers

Object
Manager

Security
Reference

Monitor

Process
Manager

Local
Procedure

Call
Facility

Virtual
Memory
Manager

System Services

Executive Services

Misc. Env. Func. Graphics Device Drivers

Graphics
Device Interface

Window
Manager

Console

Win32 subsystem

POSIX
subsystem

OS/2
subsystem

Security
subsystem

NTVDM MS-DOS Win16

Kernel Mode

User Mode

AP 9/01

Windows NT 4.0 Architecture

File System
Drivers

Cache
Manager

I/O Manager

Hardware

Hardware Abstraction Layer (HAL)

Microkernel

Network
Drivers

Hardware
Device Drivers

Object
Manager

Security
Reference

Monitor

Process
Manager

Local
Procedure

Call
Facility

Virtual
Memory
Manager

System Services

Executive Services

Misc. Env. Func.

Graphics
Device

Interface

Window
Manager

Console

Win32 subsystem

POSIX
subsystem

OS/2
subsystem

Security
subsystem

NTVDM MS-DOS Win16

Kernel
Mode

User Mode

WIN32K.SYS

Graphics
Device
Drivers

AP 9/01

What remains in Win32 Subsystem?

• Drawing and updating for console or text windows
– console applications have no notion of repainting a window.

• Process and thread creation and termination

• Network drive letter mapping

• Creation of temporary files

• Win32 applications cause only few context switches to
the Win32 subsystem process

AP 9/01

POSIX Subsystem

• Windows 2000 implements POSIX.1
– ISO/IEC 9945-1:1990 or IEEE POSIX standard 1003.1-1990

– POSIX.1 compliance as specified in Federal Information Processing Standard
(FIPS) 151-2 (NIST)

– POSIX Conformance Document in \HELP in Platform SDK

• support for impl. of POSIX.1 subsystem was mandatory for NT
– fork service in NT executive

– hard file links in NTFS

• limited set of services
– such as process control, IPC, simple character cell I/O

– POSIX subsystem alone is not a complete programming environment

• POSIX executable cannot
– create a thread or a window

– use remote procedure calls (RPCs) or sockets

Microsoft supplies a full
POSIX subsystem for
Windows 2000 under
the Interix product name

AP 9/01

Porting UNIX Apps to NT

• UNIX-to-Win32 porting libraries
– DataFocus (http://www.datafocus.com/)

– ConsenSys (http://www.consensys.com/)

– Cygnus - CygWin GNU tools (http://www.cygnus.com/)

• POSIX subsystem with complete UNIX system service
and utilities environment
– Interix from Microsoft (used to be SoftWay (http://www.opennt.com/)

– Bought by Microsoft as of Sept. 99

• NT Resource Kit includes optional set of POSIX utilities

• POSIX executables are linked against PSXDLL.DLL
– Header files in platform SDK

AP 9/01

Watching the POSIX Subsystem Start

POSIX subsystem starts on demand:

1. Type tlist /t, check that POSIX subsyst. is not running

2. Run \ntreskit\POSIX\LS.EXE

3. Run tlist /t again, PSXSS.EXE is child of SMSS.EXE

AP 9/01

OS/2 environment subsystem

Limited in usefulness:
• only OS/2 1.2 16-bit char-based or video I/O (VIO)

apps
• only on x86 systems.

Add-on OS/2 1.2 PresentationManager
• can't run OS/2 2.x (or later) applications.

• 64 Priority levels are mapped on NT 0..15 (no RT)
• OS/2 subsystem starts automatically

AP 9/01

OS/2 Memory

• Up to 512 MB memory
for OS/2 app.
– Virtual addr space is

reserved up front

– Commit/decommit on
request of 16 bit OS/2
apps

OS/2 subsystem
memory layout

AP 9/01

NTDLL.DLL

Support library for use of subsystem DLLs:
• System service dispatch stubs to NT executive system

services
– NtCreateFile, NtSetEvent
– More than 200
– Most of them are accessible through Win32
Stubs call service-dispatcher/kernel-mode service in NTOSKRNL.EXE

• Support functions used by subsystems
– Image loader (Ldr...)
– Heap manager
– Win32 subsyst. Comm. func. (Csr...)
– Runtime library func. (Rtl...)
– User-mode asynch. procedure call (APC) dispatcher, exception disp.

AP 9/01

Executive

Upper layer of NTOSKRNL.EXE (kernel: lower layer)

Contains:

• Exported func., callable through NTDLL.DLL, Win32...

• Exported func., not currently available though subsyst
– LPCs, query functions: NtQueryInformationxxx

– Specialized functions: NtCreatePagingFile

• Doc. functions callable from kernel mode, NT DDK

• Internal support routines

AP 9/01

Executive components

• Process and thread manager

• Virtual memory manager

• Security reference monitor: protection/auditing

• I/O system: device independent I/O

• Cache manager: uses mem.manag. - mapped files

• Object manager: processes, threads, synch. objects

• LPC facility: flexible, optimized version of DCE RPC

• Run-time library: math, string, data types

• Support routines: syst. Mem. Alloc., paged/nonpaged

AP 9/01

Kernel

Most fundamental operations in NT

• Thread scheduling and dispatching

• Trap handling and exception dispatching

• Interrupt handling and dispatching

• Multiprocessor synchronization

• Base kernel objects for executive

Never paged out of memory

Never preempted

Small, compact, portable, efficient: C, assembly lang.
– no probes for parameter accessibility

– Some functions documented in DDK (Ke...)

AP 9/01

• Little overhead, small, efficient

• Control objects:
– Kernel process object

– Asynchronous procedure call object

– Deferred procedure call object

– Interrupt object

• Dispatcher objects
– Synchronization objects

– Kernel thread, mutex (mutant), kernel event pair, semaphor, timer,
waitable timer,

• Kernel supports set of interfaces that are portable and
semantically identical accross architectures

Kernel objects

Small amount of x86-specific
interfaces to support old MS-

DOS programs:

GDT/LDT are x86 HW specific

AP 9/01

Hardware Abstraction Layer

Loadable kernel module (HAL.DLL)

• Low-level interface to NT hardware platform

• Hides I/O interface, interrupt controllers, MP comm.
– Architecture-specific, machine-dependent details

• Device driver call HAL routines for platform-dep. Info

• Only one HAL.DLL is installed
– Many HAL*.DLL on distribution media

– VMS may choose HAL at boot time

AP 9/01

Device Drivers

• Loadable kernel modules

• Don‘t manipulate hardware, but call parts of HAL
– Written in C/C++ typically

– Source code portable accross CPU architectures !!

Types:

• Hardware device drivers: implement device/network I/O

• File system drivers: file I/O <-> device I/O

• Filter drivers: disk mirroring, encryption

• Network redirectors and servers: send/receive remote
I/O requests

AP 9/01

List Drivers

• Control Panel -> Devices: installed drivers
• DRIVERS.EXE / pstat: loaded drivers

D:\home> drivers
 ModuleName Code Data Bss Paged Init LinkDate
--
ntoskrnl.exe 270272 40064 0 434816 82880 Sun May 11 05:10:39 1997
 hal.dll 20384 2720 0 9344 11936 Mon Mar 10 21:39:20 1997
 atapi.sys 22368 1088 0 0 768 Sat Apr 04 00:06:15 1998
SCSIPORT.SYS 9792 32 0 15840 2208 Sat Apr 04 00:05:43 1998
 CPQSPM.sys 4896 64 0 0 544 Thu Feb 05 14:39:28 1998
 Disk.sys 3328 0 0 7072 1600 Fri Apr 25 03:27:46 1997
 CLASS2.SYS 7040 0 0 1632 1152 Fri Apr 25 03:23:43 1997
 ScsiPwr.sys 8576 1248 0 0 0 Mon Sep 09 11:39:25 1996
 Ntfs.sys 68160 5408 0 269632 8704 Fri Apr 18 03:02:31 1997
 Floppy.SYS 1088 672 0 7968 6112 Wed Jul 17 05:31:09 1996
 Cdrom.SYS 12608 32 0 3072 3104 Wed Jul 17 05:31:29 1996
 Fs_Rec.SYS 64 0 0 2912 1152 Mon Mar 10 21:51:19 1997
 Null.SYS 0 0 0 288 416 Wed Jul 17 05:31:21 1996
 KSecDD.SYS 1280 224 0 3456 1024 Thu Jul 18 01:34:19 1996
 Beep.SYS 1184 0 0 0 704 Wed Apr 23 20:19:43 1997

AP 9/01

Startup: Session Manager (SMSS)

First user-mode process (kernel calls ExInitializeSystem)
1. Creates LPC port (\SmApiPort); waits for load-subsystem/create

session client requests; 2 threads

2. Creates system environment variables

3. Defines symbolic links for MS-DOS device names (COM1, LPT1)

4. Creates addtional paging files

5. Opens known DLLs (efficiency; re-use of pages)

6. Loads kernel-mode part of Win32 subsystem (WIN32K.SYS)

7. Starts subsystem processes (POSIX, OS/2 start on demand)

8. Starts logon process (WINLOGON)

9. Creates LPC ports for debug event messages (DbgSsApiPort,
DbgUiApiPort) and threads to listen on these ports

waits for CSRSS & WINLOGON; crashes NT on termination

AP 9/01

WINLOGON

• Secure attention sequence (SAS) keystroke
– Protection from password-capture programs that simulate logon

– Default sequence: CTRL-ALT-DEL

• User/pass sent to local security authentication server

• USERINIT.EXE is created -> starts shell and exits
– Default: explorer.exe

• Identification/authentication in replaceable DLL
– GINA (Graph. Id. And Auth.) – default: MSGINA:DLL

– WINLOGON can load add. Network provider DLLs (secondary Auth.)

• WINLOGON remains active
– NT Security dialog box on SAS keystroke

– Demo: how do I change my password?

AP 9/01

Local Security Authentication Server
(LSASS)

• Receives requests from WINLOGON

• Calls authentication package (DLL)

• Performs verification (SAM – part of registry)
(Security Accounts Manager)

• LSASS generates access token object
– Contains user‘s security profile

• WINLOGON creates initial shell using this token
– Child processes inherit access token (default)

AP 9/01

System Process Tree

smss.exe Session Manager
The first “created” process ;Takes parameters from
\Registry\Machine\System\CurrentControlSet\Control\
Session Manager
Launches required subsystems (csrss) and then winlogon

csrss.exe Win32 subsystem
winlogon.exe Logon process: Launches services.exe, lsass.exe, and nddeagnt.exe;

presents first login prompt;
presents “enter username and password” dialog
When someone logs in, launches userinit.exe

services.exe Service Controller; also, home for many Windows NT-
supplied services
Starts processes for services not part of services.exe (driven by
\Registry\Machine\System\
CurrentControlSet\Services)

lsass.exe Local Security Authentication Server
userinit.exe Started after logon; starts desktop (Explorer.Exe) and exits (hence

does not show up in tlist output; Explorer appears to be an orphan)
explorer.exe and its children are the creators of all interactive apps

AP 9/01

Service Controller (SERVICES)

• Service process or device driver ?

• User mode service processes:
– Like UNIX „deamon processes“ / VMS „detached processes“

– Automatic start at system startup

– Manual start: Win32 StartService, ControlPanel->Services

• W2K components as services:
– Spooler, event log, RPC support,

– networking components

• Services have 3 names:
– Process name, registry name,

display name

 WINLOGON.EXE (34)
 SERVICES.EXE (40)
 SPOOLSS.EXE (70)
 daccess.exe (82)
 CPQALERT.EXE (85)
 dssvc.exe (97)
 mgasc.exe (103)
 mgactrl.exe (107)
 RPCSS.EXE (109)
 AGENTSVR.EXE (313)
 TCPSVCS.EXE (131)

