
AP 9/01

Unit 2: Windows 2000 Architecture

2.1. Structuring of the Windows 2000
Operating System



AP 9/01

Windows 2000 System Architecture
and System Mechanisms

Requirements & Design Goals

Architecture Overview

Key System Components

Trap Dispatching

Object Manager

Synchronization

Local Procedure Calls



AP 9/01

Requirements and Design Goals

• Provide a true 32-bit, preemptive, reentrant, virtual memory
operating system

• Run on multiple hardware architectures and platforms

• Run and scale well on symmetric multiprocessing systems

• Be a great distributed computing platform (Client & Server)

• Run most existing 16-bit MS-DOS and Microsoft Windows 3.1
applications

• Meet government requirements for POSIX 1003.1 compliance

• Meet government and industry requirements for operating system
security

• Be easily adaptable to the global market by supporting Unicode



AP 9/01

Goals (contd.)

• Extensibility
– Code must be able to grow and change as market requirements change.

• Portability
– The system must be able to run on multiple hardware architectures and must

be able to move with relative ease to new ones as market demands dictate.

• Reliability and Robustness
– Protection against internal malfunction and external tampering.
– Applications should not be able to harm the OS or other running applications.

• Compatibility
– User interface and APIs should be compatible with older versions of Windows

as well as older operating systems such as MS-DOS.
– It should also interoperate well with UNIX, OS/2, and NetWare.

• Performance
– Within the constraints of the other design goals, the system should be as fast

and responsive as possible on each hardware platform.
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Microkernel Operating Systems

• Client/server systems fall within a spectrum
– some doing very little work in kernel mode and others doing more.

• Carnegie Mellon University Mach operating system
– contemporary example of the client/server microkernel system,

– implements minimal kernel that comprises thread scheduling, message passing,
virtual memory, and device drivers

– Everything else, including various APIs, file systems, and networking, runs in
user mode.

• Commercial implementations of Mach run file system, networking,
and memory management in kernel mode

• The reason: the pure microkernel design is too slow
– Windows NT 3.51 was comparable to Mach

– Windows NT 4.0 moved significant part of Win32 subsystem (GDI, Window
Manager) into kernel
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Windows 2000 Architecture
(simplified)

• User mode versus kernel mode

• More crashes due to Win32 execution in kernel mode?
no ! Important user-space server would even

        crash microkernel OS
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Process Types (user proc.)

• System support processes:
– logon process, session manager

– Not started by the service controller

• Server processes that are Windows 2000 services:
– Event log, scheduler service

– Components of add-on apps: SQL server, exchange server

• Environment subsystems (personalities):
– Win32, POSIX, OS/2 1.2

– Subsystem DLLs (documented function -> NT service call)

• User applications (5 types):
– Win32, Windows 3.1, MS-DOS, POSIX, OS/2 1.2
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Kernel mode components

• NT executive: memory, process, thread mang.,
security, I/O, IPC

• NT kernel: low-level OS func – scheduling,
interrupts, exceptions, multiprocessor synch.
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Portability

• HAL (Hardware Abstraction Layer):
– support for x86 (initial), MIPS (initial), Alpha AXP, PowerPC (NT 3.51),

Itanium (Windows 2000)
– Machine-specific functions located in HAL

• Layered design:
– architecture-specific functions located in kernel

• Windows 2000 is written in C
– (OS executive, utilities, drivers)

• UI and graphics subsystem
– written in C++

• HW-specific/performance-sensitive parts
– written in assembly lang: int trap handler, context switching
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Symmetric Multiprocessing (SMP)

• No master processor
• Up to 32 PE

• W2K Pro: 2
• W2K S: 4
• W2K/AS: 8

• Modified HAL for more than 8 processors
HKLM\System\CurrentControlSet\SessionManager\LicensedProcessors
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SMP supported by OS

• OS code runs on every processor; preemptable
– Exception: scheduling & interrupt handling

• Multithreading; potentially simultaneous execution
• Fine-grained synchronization in kernel/device drivers
• Multithreaded server processes
• Flexible object sharing; IPC

– Shared memory, message passing

• Single version of W2K:
– SMP requires different HALs and kernels (on CD):
– NTOSKRNL.EXE – uniprocessor executive/kernel
– NTKRNLMP.EXE – multiprocessor executive/kernel (same sources)
– Selection at installation time, file is always installed as

\winnt\system32\NTOSKRNL.EXE
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Windows 2000 Professional vs.
Windows 2000 Server

• Same source; scheduling handled differently

• Services:
– network management and directory services: Active Directory

– Disk FT features (striping with parity and mirroring)

– Services for Macintosh: file and printer sharing, user admin

– Gateway Service for NetWare

– TCP/IP: Domain Name System (DNS) and Dynamic Host
Configuration Protocol (DHCP)

– Remote boot server for diskless MS-DOS, Win3.1, Win95 PCs

• Licensing:
– W2K Pro: 10 netw. Conn; 10 printer/file sharing conn.
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Key System Components
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Key Windows 2000 System Files

SERVICES.EXE Service controller process
WINLOGON.EXE Logon process
SMSS.EXE Session manager process
PSXSS.EXE POSIX subsystem process
OS2SS.EXE OS/2 subsystem process
CSRSS.EXE* Win32 subsystem process
NTDLL.DLL Internal support functions and system 

service dispatch stubs to executive functions
KERNEL32.DLL,
USER32.DLL,
GDI32.DLL. Win32 subsystem DLLs
PSXDLL.DLL POSIX subsystem DLL
NTOSKRNL.EXE** Executive and kernel
HAL.DLL Hardware abstraction layer
WIN32K.SYS Win32 USER and GDI kernel-mode components
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Subsystems

• POSIX (1003.1), OS/2 (Intel only), Win32 (required)

• Executable (.exe) is linked to exactly one subsystem
– Win32 app cannot use POSIX fork (but: tlist –t)

– Subsystems can be loaded on demand

(HKLM\System\CurrentControlSet\Control\Session Manager\Subsystems)

Required 
on boot

Full POSIX subsystem: Interix (from MS); GNU: www.cygnus.com
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App calls Subsystem

• Function is entirely implemented in user mode
– No message sent to environment subsystem process
– No Win NT executive system service called
– Examples: PtInRect(), IsRectEmpty()

• Function requires one/more calls to NT executive
– Examples: Win32 ReadFile() / WriteFile() implemented using I/O

system services NtReadFile() / NtWriteFile()

• Function requires some work in environment subsystem
process (maintain state of client app)
– Client/server request (message) to env. Subsystem (LPC facility)
– Subsystem DLL waits for reply before returning to caller

• Combinations of 2/3: CreateProcess() / CreateThread()
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Win32 Subsystem

• Environment subsystem process (CSRSS.EXE):
– Console (text) windows

– Creating and deleting processes and threads

– Portions of the support for 16-bit virtual DOS machine (VDM)

– Other func: GetTempFile, DefineDosDevice, ExitWindowsEx

• kernel-mode device driver (WIN32K.SYS):
– Window manager: manages screen output;

– input from keyboard, mouse, and other devices

– user messages to applications.

– Graphical Device Interface (GDI)
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Win32 Subsystem (contd.)

• Subsystem DLLs (such as USER32.DLL,
ADVAPI32.DLL, GDI32.DLL, and KERNEL32.DLL)
– Translate Win32 API functions into calls to NTOSKRNL.EXE and

WIN32K.SYS.

• Graphics device drivers
– graphics display drivers, printer drivers, video miniport drivers

Prior to Windows NT 4.0, the window manager and
graphics services were part of the user-mode Win32
subsystem process.

Is Windows NT Less Stable with Win32 USER and GDI in Kernel
Mode?
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Windows NT 4.0 Architecture
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What remains in Win32 Subsystem?

• Drawing and updating for console or text windows
– console applications have no notion of repainting a window.

• Process and thread creation and termination

• Network drive letter mapping

• Creation of temporary files

• Win32 applications cause only few context switches to
the Win32 subsystem process
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POSIX Subsystem

• Windows 2000 implements POSIX.1
– ISO/IEC 9945-1:1990 or IEEE POSIX standard 1003.1-1990

– POSIX.1 compliance as specified in Federal Information Processing Standard
(FIPS) 151-2 (NIST)

– POSIX Conformance Document in \HELP in Platform SDK

• support for impl. of POSIX.1 subsystem was mandatory for NT
– fork service in NT executive

– hard file links in NTFS

• limited set of services
– such as process control, IPC, simple character cell I/O

– POSIX subsystem alone is not a complete programming environment

• POSIX executable cannot
– create a thread or a window

– use remote procedure calls (RPCs) or sockets

Microsoft supplies a full
POSIX subsystem for
Windows 2000 under
the Interix product name
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Porting UNIX Apps to NT

• UNIX-to-Win32 porting libraries
– DataFocus (http://www.datafocus.com/)

– ConsenSys (http://www.consensys.com/)

– Cygnus - CygWin GNU tools (http://www.cygnus.com/)

• POSIX subsystem with complete UNIX system service
and utilities environment
– Interix from Microsoft (used to be SoftWay (http://www.opennt.com/)

– Bought by Microsoft as of Sept. 99

• NT Resource Kit includes optional set of POSIX utilities

• POSIX executables are linked against PSXDLL.DLL
– Header files in platform SDK
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Watching the POSIX Subsystem Start

POSIX subsystem starts on demand:

1. Type tlist /t, check that POSIX subsyst. is not running

2. Run \ntreskit\POSIX\LS.EXE

3. Run tlist /t again, PSXSS.EXE is child of SMSS.EXE
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OS/2 environment subsystem

Limited in usefulness:
• only OS/2 1.2 16-bit char-based or video I/O (VIO)

apps
• only on x86 systems.

Add-on OS/2 1.2 PresentationManager
• can't run OS/2 2.x (or later) applications.

• 64 Priority levels are mapped on NT 0..15 (no RT)
• OS/2 subsystem starts automatically
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OS/2 Memory

• Up to 512 MB memory
for OS/2 app.
– Virtual addr space is

reserved up front

– Commit/decommit on
request of 16 bit OS/2
apps

OS/2 subsystem
memory layout
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NTDLL.DLL

Support library for use of subsystem DLLs:
• System service dispatch stubs to NT executive system

services
– NtCreateFile, NtSetEvent
– More than 200
– Most of them are accessible through Win32
Stubs call service-dispatcher/kernel-mode service in NTOSKRNL.EXE

• Support functions used by subsystems
– Image loader (Ldr...)
– Heap manager
– Win32 subsyst. Comm. func. (Csr...)
– Runtime library func. (Rtl...)
– User-mode asynch. procedure call (APC) dispatcher, exception disp.
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Executive

Upper layer of NTOSKRNL.EXE (kernel: lower layer)

Contains:

• Exported func., callable through NTDLL.DLL, Win32...

• Exported func., not currently available though subsyst
– LPCs, query functions: NtQueryInformationxxx

– Specialized functions: NtCreatePagingFile

• Doc. functions callable from kernel mode, NT DDK

• Internal support routines
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Executive components

• Process and thread manager

• Virtual memory manager

• Security reference monitor: protection/auditing

• I/O system: device independent I/O

• Cache manager: uses mem.manag. - mapped files

• Object manager: processes, threads, synch. objects

• LPC facility: flexible, optimized version of DCE RPC

• Run-time library: math, string, data types

• Support routines: syst. Mem. Alloc., paged/nonpaged
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Kernel

Most fundamental operations in NT

• Thread scheduling and dispatching

• Trap handling and exception dispatching

• Interrupt handling and dispatching

• Multiprocessor synchronization

• Base kernel objects for executive

Never paged out of memory

Never preempted

Small, compact, portable, efficient: C, assembly lang.
– no probes for parameter accessibility

– Some functions documented in DDK (Ke...)
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• Little overhead, small, efficient

• Control objects:
– Kernel process object

– Asynchronous procedure call object

– Deferred procedure call object

– Interrupt object

• Dispatcher objects
– Synchronization objects

– Kernel thread, mutex (mutant), kernel event pair, semaphor, timer,
waitable timer,

• Kernel supports set of interfaces that are portable and
semantically identical accross architectures

Kernel objects

Small amount of x86-specific
interfaces to support old MS-

DOS programs:

GDT/LDT are x86 HW specific
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Hardware Abstraction Layer

Loadable kernel module (HAL.DLL)

• Low-level interface to NT hardware platform

• Hides I/O interface, interrupt controllers, MP comm.
– Architecture-specific, machine-dependent details

• Device driver call HAL routines for platform-dep. Info

• Only one HAL.DLL is installed
– Many HAL*.DLL on distribution media

– VMS may choose HAL at boot time
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Device Drivers

• Loadable kernel modules

• Don‘t manipulate hardware, but call parts of HAL
– Written in C/C++ typically

– Source code portable accross CPU architectures !!

Types:

• Hardware device drivers: implement device/network I/O

• File system drivers: file I/O <-> device I/O

• Filter drivers: disk mirroring, encryption

• Network redirectors and servers: send/receive remote
I/O requests
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List Drivers

• Control Panel -> Devices: installed drivers
• DRIVERS.EXE / pstat: loaded drivers

D:\home> drivers
  ModuleName    Code    Data     Bss   Paged    Init          LinkDate
------------------------------------------------------------------------------
ntoskrnl.exe  270272   40064       0  434816   82880  Sun May 11 05:10:39 1997
     hal.dll   20384    2720       0    9344   11936  Mon Mar 10 21:39:20 1997
   atapi.sys   22368    1088       0       0     768  Sat Apr 04 00:06:15 1998
SCSIPORT.SYS    9792      32       0   15840    2208  Sat Apr 04 00:05:43 1998
  CPQSPM.sys    4896      64       0       0     544  Thu Feb 05 14:39:28 1998
    Disk.sys    3328       0       0    7072    1600  Fri Apr 25 03:27:46 1997
  CLASS2.SYS    7040       0       0    1632    1152  Fri Apr 25 03:23:43 1997
 ScsiPwr.sys    8576    1248       0       0       0  Mon Sep 09 11:39:25 1996
    Ntfs.sys   68160    5408       0  269632    8704  Fri Apr 18 03:02:31 1997
  Floppy.SYS    1088     672       0    7968    6112  Wed Jul 17 05:31:09 1996
   Cdrom.SYS   12608      32       0    3072    3104  Wed Jul 17 05:31:29 1996
  Fs_Rec.SYS      64       0       0    2912    1152  Mon Mar 10 21:51:19 1997
    Null.SYS       0       0       0     288     416  Wed Jul 17 05:31:21 1996
  KSecDD.SYS    1280     224       0    3456    1024  Thu Jul 18 01:34:19 1996
    Beep.SYS    1184       0       0       0     704  Wed Apr 23 20:19:43 1997
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Startup: Session Manager (SMSS)

First user-mode process (kernel calls ExInitializeSystem)
1. Creates LPC port (\SmApiPort); waits for load-subsystem/create

session client requests; 2 threads

2. Creates system environment variables

3. Defines symbolic links for MS-DOS device names (COM1, LPT1)

4. Creates addtional paging files

5. Opens known DLLs (efficiency; re-use of pages)

6. Loads kernel-mode part of Win32 subsystem (WIN32K.SYS)

7. Starts subsystem processes (POSIX, OS/2 start on demand)

8. Starts logon process (WINLOGON)

9. Creates LPC ports for debug event messages (DbgSsApiPort,
DbgUiApiPort) and threads to listen on these ports

waits for CSRSS & WINLOGON; crashes NT on termination
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WINLOGON

• Secure attention sequence (SAS) keystroke
– Protection from password-capture programs that simulate logon

– Default sequence: CTRL-ALT-DEL

• User/pass sent to local security authentication server

• USERINIT.EXE is created -> starts shell and exits
– Default: explorer.exe

• Identification/authentication in replaceable DLL
– GINA (Graph. Id. And Auth.) – default: MSGINA:DLL

– WINLOGON can load add. Network provider DLLs (secondary Auth.)

• WINLOGON remains active
– NT Security dialog box on SAS keystroke

– Demo: how do I change my password?
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Local Security Authentication Server
(LSASS)

• Receives requests from WINLOGON

• Calls authentication package (DLL)

• Performs verification (SAM – part of registry)
(Security Accounts Manager)

• LSASS generates access token object
– Contains user‘s security profile

• WINLOGON creates initial shell using this token
– Child processes inherit access token (default)
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System Process Tree

smss.exe Session Manager
The first “created” process ;Takes parameters from
\Registry\Machine\System\CurrentControlSet\Control\
Session Manager
Launches required subsystems (csrss) and then winlogon

csrss.exe Win32 subsystem
winlogon.exe Logon process:  Launches services.exe, lsass.exe, and nddeagnt.exe;

presents first login prompt;
presents “enter username and password” dialog
When someone logs in, launches userinit.exe

services.exe Service Controller; also, home for many Windows NT-
supplied services
Starts processes for services not part of services.exe (driven by
\Registry\Machine\System\
CurrentControlSet\Services )

lsass.exe Local Security Authentication Server
userinit.exe Started after logon; starts desktop (Explorer.Exe) and exits (hence

does not show up in tlist output; Explorer appears to be an orphan)
explorer.exe and its children are the creators of all interactive apps
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Service Controller (SERVICES)

• Service process or device driver ?

• User mode service processes:
– Like UNIX „deamon processes“ / VMS „detached processes“

– Automatic start at system startup

– Manual start: Win32 StartService, ControlPanel->Services

• W2K components as services:
– Spooler, event log, RPC support,

– networking components

• Services have 3 names:
– Process name, registry name,

display name

 WINLOGON.EXE (34)
      SERVICES.EXE (40)
        SPOOLSS.EXE (70)
        daccess.exe (82)
        CPQALERT.EXE (85)
        dssvc.exe (97)
        mgasc.exe (103)
          mgactrl.exe (107)
        RPCSS.EXE (109)
          AGENTSVR.EXE (313)
        TCPSVCS.EXE (131)


