
AP 9/01

Unit 14: The Mach Operating System

14.4. The Shared Objects Net-interconnected
Computer (SONiC)

AP 9/01

The Shared Objects Net-
interconnected Computer (SONiC)

• Parallel Computing in Networks of Workstations (NOW)
– Spare computing capacity / redundancy
– Object-based distributed shared memory (DSM) / Ease-of-Use

• Shared Objects – Communication and Synchronization
– Remote Execution Service - fork/join-Parallelism
– Programming with replicated C++ objects

• Resource sharing among
– Interactive users / parallel computations

• Commercial off-the-shelf systems (COTS)
– Standard system software: Mach, Windows NT/2000

Research
project at the

Computer Arch.
and Comm. Group

www.polze.de/andreas

AP 9/01

Structure of the SONiC
Runtime System

• Mach Microkernel provides a sound basis:
– Networking implemented by user space-servers

– Mach supports multiple scheduling policies and provides
access to the scheduler

– Modern OS Parallel Task

Parallel TaskParallel Task

Rexec
Server

Scheduling
Server

Object
Repository

Mach OS
Microkernel

SONiC

AP 9/01

The Scheduling Server Approach

• High-priority process manipulates dynamically priority of
client processes
– Based on fixed priority scheduling-policy
– handoff scheduling - hints to the system scheduler

Scheduling Server implements:
• Round Robin
• Earliest Deadline First (EDF)
• Rate Monotonic Scheduling (RMS)
ensures interactive availability!

Without changes to operating system kernel

client
tasks

task list

A B C

Scheduling
Server

task control port

deadline

AP 9/01

Scheduling Server:
 Stability with little Overhead

• Implementation based on Mach OS (NeXTSTEP), HP PA-RISC
• Little impact of varying background/disk-I/O loads
• Overhead less than 10%, typically 5%

AP 9/01

The Programmers View

AP 9/01

SONiC Communication Structure

• Write-invalidate and
write-update protocols
supported

• Programmer deals with
replicated C++ data
structures (objects)

• „invisible“ consistency
management

parallel task 1

class C o1;

msg_send()
msg_receive()

o1.put();

msg_send()

consistency
manager
thread

msg_receive()
msg_send()

parallel task 2

class C o1;

msg_send()
msg_receive()

msg_send()
msg_receive()

o1.read();
class C o2;

msg_send()
msg_receive()

o1.read();
o2.put();

msg_send()

consistency
manager
thread

msg_receive()

Object repository
task

objID list of copies
(port,addr)

o1

o2

(7, 0x0400)
(38, 0x640)

(38, 0x648)

register object
(update)

owner (me)

update copies

obtain owner
port & obj-addr

register copy

update object

obtain
object‘s values

register object (invalidate)

owner (me)

invalidate copies

AP 9/01

Memory Representation
of Replicated Data

• Example: Processes write disjunctive portions of an array

• Multicomputer (Sequent Symmetry):
– Hardware defines layout of a data structure

– Exclusive write accesses to memory pages

• Shared Objects:
– Programmer (Algorithm-Designer) defines layout of data structures

– Data are represented as replicated Sub-Arrays t, Read-replication

– Partially allocated structures

– Simultaneous write-accesses to disjunctive sub-arrays are possible (!)

AP 9/01

Observations

• Software-DSM systems are easy to use
(sequential programming model)

• Well suited for coarse-grained control parallel programming

• Variety of weakly consistent memory management protocols;

• many experimental systems:
– Munin, TreadMarks (Rice Univ.) (release consistency),

– MIDWAY (CMU) (entry consistency),

– PANDA (U.Kaiserslautern) (page differentiation, migration),

– Linda (Yale) (Tuple Space)

• No single standard system

• Reliability? – predictable system behavior?

Motivation for research on middleware-based systems

