
AP 9/01

Unit 14: The Mach Operating System

14.3. Mach Memory Management

AP 9/01

Mach Virtual Memory Management

• Each Mach task receives a 4-gigabyte virtual address space for its
threads to execute in.

• A task can modify its address space in several ways. It can:
– Allocate a region of virtual memory (on a page boundary).

– Deallocate a region of virtual memory.

– Set the protection status of a region of virtual memory.

– Specify the inheritance of a region of virtual memory.

– Create and manage a memory object that can then be mapped into the space
of another task.

• Regions for virtual memory operations must be aligned on system
page boundaries.
– The size in bytes of a virtual memory page is contained in the vm_page_size

variable.

AP 9/01

Virtual Memory

• Mach manages memory regions
– sections of virtual address space

– Identified by base address and a size

• Memory objects can be mapped onto
unused portions of the address space
– Page, set of pages, memory mapped files

File region

File region

Stack region

Data region

Text region

Unused
 virtual

 address
 space

AP 9/01

Inheritance and Protection of Memory

• With UNIX, creating a new process entails creating a
copy of the parent's address space.
– inefficient operation;

– often child task touches only a portion of its copy of the parent's
address space.

• Under Mach, the child task initially shares the parent's
address space.

• Copying occurs only when needed, on a page-by-page
basis.

AP 9/01

Inheritance of Memory (contd.)

• A task may specify that pages of its address space be
inherited by child tasks in three ways:

Copy:
– Pages marked as copy are logically copied by value;
– For efficiency copy-on-write techniques are used.
– This is the default mode of inheritance if no mode is specified.

Shared:
– Pages specified as shared can be read from and written to by both the

parent and child.

None
– Pages marked as none aren't passed to a child.
– The child's corresponding address is left unallocated.

AP 9/01

Paging Objects

• Paging Objects
– secondary storage object that's mapped into a task's virtual memory.

– Paging objects are commonly files managed by a file server;

– may be implemented by any port that can handle requests to read and
write data.

• Physical pages in an address space have paging
objects associated with them.
– identify the backing storage to be used when a page is to be read in or

written.

AP 9/01

Operation of Mach VM

• Code is split into three parts
– Pmap module runs in kernel and deals with MMU

(Memory Management Unit)

– Machine-independent kernel code

– External pager (user-space memory manager)

• Pager manages backing store (disk)
– Kernel and memory manager communicate via well-defined protocol

– Users may write their own memory managers

– Pagers are not required to use secondary storage at all:
instead of paging onto a disk they may send memory pages to remote
machines across a network

– This allows for transparent implementation of distributed shared
memory

AP 9/01

External Pagers

An external pager provides access to secondary storage through
memory objects

AP 9/01

Shared Memory based
on External Pagers

AP 9/01

Virtual Memory Functions

• vm_allocate() to get new virtual memory

• vm_deallocate() to free virtual memory

• The UNIX functions malloc(), calloc(), and free(), use
vm_allocate() and vm_deallocate().

• Memory may appear in a task's address space as the
result of a msg_receive() operation.

AP 9/01

VM Functions (contd.)

• malloc() and calloc() are library subroutine calls;
• vm_allocate() is a Mach kernel function, which is

somewhat more expensive.
• If memory has been allocated with vm_allocate(),

– it must be deallocated with vm_deallocate();

• if it was allocated with malloc()
– it must be deallocated with free().

• Memory that's received out-of-line from a message has
been allocated by the kernel with vm_allocate().

• vm_copy(), vm_read(), vm_write() copy memory pages
between tasks.

AP 9/01

Operation of vm_read/vm_write

AP 9/01

UNIX Emulation in Mach

• Mach has various servers that run on top of it
– UNIX server contains large amount of Berkely UNIX code

– Essentially the entire file system code is contained in UNIX server

• UNIX server (UX) operation:
– Server and emulation library interact

– At system start, UX instructs kernel to redirect system call traps to
emulation library

– Emulation library inspects processor registers to determine which
system call was invoked

– It calls UX server via Mach IPC (RPC)

– On return, control is given directly to the caller (user program)

– fork()/exec() have been modified so that the emulation library is
attached to every newly created task

AP 9/01

UNIX Emulation (contd.)

UNIX
binary

Emulation
library

UNIX binary
traps to the

kernel to make
a system call

RPC to UNIX server
to carry out
system calls

UNIX
server (UX)

BSD service
thread

i-node pager

Device thread

Trap is
reflected

back to the
emulation

library

1

2

3

4

AP 9/01

UNIX Server Implementation

• Implemented as a collection of C-threads

• Most threads handle BSD system calls
– Emulation library communicates with server threads using Mach IPC

• When a message comes in...
– An idle thread accepts it

– Determines originator and extracts system call number and parameters

– Executes the call and sends back the reply

• Most messages correspond exactly to one BSD system
call

AP 9/01

Implementation of I/O Calls

• For performance reasons, I/O is implemented differently

• Files are mapped directly in caller‘s address space
– Emulation library operates on mapped file

– Page faults will occur when accessing the mapped file

• Each page fault requires interaction with external pager
– i-node pager thread inside UX server operates as external pager

– It accesses the disk and arranges for it to be mapped into the
application program‘s address space

• i-node pager thread synchronizes operations on files
opened by several UNIX tasks simultaneously

AP 9/01

Additional Reading

• J. Boykin, D. Kirschen, A. Langerman, S. LoVerso, „Programming
under Mach“, Addison-Wesley, 1993.

• A.S. Tanenbaum, „Distributed Operating Systems“, Prentice Hall,
1995.

• David. L. Black. „Scheduling Support for Concurrency and
Parallelism in the Mach Operating System“ CMU Technical Report
CMU-CS-90-125, also May 1990 IEEE Computer.

• David Golub, Randall Dean, Alessandro Forin, Richard Rashid.
„Unix as an Application Program“, Proceedings of the USENIX
Summer Conference, June 1990.

• www-2.cs.cmu.edu/afs/cs.cmu.edu/project/mach/public/www/mach.html

