
AP 9/01

Unit 14: The Mach Operating System

14.1. Mach Overview and System Concepts

AP 9/01

The Mach Operating System

• Research project at Carnegie Mellon University (CMU)

• based on a simple communication-oriented kernel

• designed to support distributed and parallel
computation

• provides UNIX 4.3BSD compatibility

• small, extensible system kernel provides:
– Processor scheduling

– Management of virtual memory

– Interprocess communication

AP 9/01

History of Mach

• RIG (Rochester Intelligent Gateway)
– Research OS for 16-bit Data General minicomputer (Eclipse)

– University of Rochester, Richard Rashid et al., 1975

– Demonstrate modular structuring of an OS

– Message-passing communication

• Accent
– Message-passing OS at Carnegie Mellon University

(Rashid moved to CMU in 1979)

– PERQ machine with bitmapped screen, mouse, network

– Protection, transparent networking and 32-bit virtual memory manag.

– Operational by 1981

– Accent was running on 150 PERQs by 1984

AP 9/01

History of Mach (contd.)

• Mach
– Third-generation OS

– Compatible with UNIX

– Many improvements over Accent

– threads, better interprocess communication, multiprocessor support,
novel virtual memory system

• DARPA Strategic Computing Initiative
– U.S. Department of Defense‘s Advanced Research Projects Agency

was searching for a multiprocessor operating system

– CMU was selected, substantial DARPA funding

– Mach was combined with 4.2/4.3BSD code

– Large kernel but absolute compatibility with Berkeley UNIX
(DARPA requirement)

AP 9/01

History of Mach (contd.)

• Mach 2 was released
– VAX 11/784 version (4 CPU multiprocessor) in 1986

– Ports to IBM PC/RT and Sun3 in 1987

– Versions for Encore and Sequent multiprocessors available in 1987

• OSF/1
– Open Software Foundation (consortium of vendors; IBM, DEC, HP,...)

selected Mach 2.5 as basis for OSF/1

– Alliance against AT&T and Sun Microsystem‘s UNIX System V.4

– Large and monolithic kernel

• Mach 3 microkernel OS
– CMU removed all BSD code from kernel and put it in user space

– User-level OS emulator for BSD UNIX in 1988.

AP 9/01

Mach Components

• Kernel exports a small number of abstractions through
an integrated interface.

• Operating system support environments provide:
– distributed file access

– transparent network interprocess communication

– remote execution facilities

– UNIX 4.3BSD emulation

• Many traditional operating system functions can be
implemented by user programs or servers outside the
kernel.

AP 9/01

Mach provides features not found in
UNIX 4.3BSD:

• Multiple tasks, each with a large, paged virtual memory space

• Multiple threads of execution within each task, with a flexible
scheduling facility

• Flexible sharing of memory between tasks

• Efficient and consistent message-based interprocess
communication

• Memory-mapped files

• Transparent network extensibility

• A flexible, capability-based approach to security and protection

• Support for multiprocessor scheduling

AP 9/01

Tasks and Threads

• Mach splits the notion of a process into two
abstractions,
the task and the thread:

• Task
– environment for program execution

– basic unit of protection

– basic unit of resource allocation, including
• paged virtual address space

• port rights that protect access to system resources

– The task itself performs no computation; it is a framework for running
threads.

AP 9/01

Tasks and Threads (contd.)

• Thread
– basic unit of execution

– lightweight process executing within a task – defined by processor
state

– executes within the context of a single task

– each task may contain more than one thread

– All threads within a task share
• the virtual memory address space and

• communication rights of that task.

– basic unit of scheduling

– multiple threads from one task may be executing simultaneously.

AP 9/01

Task and Thread Ports

• Tasks and threads are represented by ports
(message queues).

• Task port and thread port tell the kernel which task or
thread is executing a function call.
– task_self() and thread_self() return task and thread ports of the

currently executing thread.

• Tasks can have access to the task and thread ports of
other tasks and threads.
– creator gets access to a new task port or thread port

– any thread can pass access to ports in a message to other threads

AP 9/01

Task and Thread Ports (contd.)

• Access rights to a task or thread port allow
– to act on behalf of that task or thread

– to perform Mach function calls

• Access to a task's port indirectly permits access to all
threads within that task.

• The task port and thread port are often called kernel
ports.

• Tasks and threads have a number of special ports
associated with them.
– Notify port, Exception port, Bootstrap port.

AP 9/01

A Mach Task

Task port
Bootstrap

port
Exception

 port
Registered

ports
Kernel

Task
Address
space

Thread

Suspend counter
Scheduling parameters
Emulation address
Statistics

Other task‘s properties

AP 9/01

Mach Ports and Messages

• Communication among operating system objects is achieved
through messages.

• Mach messaging is implemented by three kernel abstractions:
• Port

– protected communication channel
– implemented as a finite-length message queue)
– basic object reference mechanism in Mach
– similar to that of object references in an object-oriented system

• Operations are requested by sending messages to and from the
ports that represent objects.

• When a task is created, a port that represents the task is
simultaneously created.

• When the task is destroyed, its port is also destroyed.

AP 9/01

Mach Ports and Messages (contd.)

• Port set
– group of ports, combining the message queues of the constituent ports.
– may be used to receive a message sent to any of several ports.

• Messages
– Used to communicate between objects;
– data stream consisting of two parts:

• fixed-length header
• variable-length message body -- typed data objects

– header contains information about:
• size of the message, its type, and its destination

– body contains the content (or a pointer to the content) of the message
– Messages may be of any size, may contain:
– in-line data, pointers to data, and capabilities for ports.

• A single message may transfer the entire address space of a task.

AP 9/01

Port Access Rights

• Communication between objects is protected by a system of port
access rights (Capabilities).

• Send access to a port
– Implies that a message can be sent to that port.

• Receive access to a port
– Allows a message to be de-queued from that port.

– Only one task may have receive access for a given port at a time;

– more than one thread within that task may concurrently attempt to receive
messages

– receive access implies send rights.

• Multiple tasks may hold send rights to the same port, but
– only one task at a time may hold receive rights to a port.

• Port access rights can be passed in messages.

AP 9/01

Port Sets

• Port sets are
– a bag holding zero or more receive rights.

– a mechanism to allow a thread to block while waiting for a message
sent to any of several ports.

• A port may be a member of no more than one port set
at any time, and a task can have only one port set.
– port_set_allocate(), port_set_add(),

– port_set_remove(), port_set_status(), port_set_deallocate().

• Unlike port rights, a port set right can't be passed in
messages.

AP 9/01

Port Names

• Every task has its own port name space, used for port
and port set names.
– For example, one task with receive rights for a port may know the port

by the name 13,

– while another task with send rights for the same port may know it by
the name 17.

• A task has only one name for a port.

• Typically, these names are small integers, but this is
implementation dependent.
– port_rename() call can be used to change a task's name for a port.

AP 9/01

Port Queues

• Messages that are sent to a port are held there until removed by a
thread.
– The queue associated with a port is of finite length and may become full.

• A thread sending to a filled queue has a choice of three
alternatives:
– By default, the sender is suspended until it can successfully transmit the

message.

– The sender can have the kernel hold the message for later transmission.

– If the sender selects this action, it can't transmit further messages to the port
until the kernel notifies it that the port has received the initial message.

• The attempt to send a message to a full port can be reported to the
sender as an error.

AP 9/01

Client/Server Setup

AP 9/01

Programming with Ports (IPC)

• Allocating a port

include <mach/mach.h>
include <mach/port.h>

int allocate_port(port_name_t* port) {
 /* allocate a new port */

 kern_return_t ret;
 ret = port_allocate(task_self(), port);
 if (ret != KERN_SUCCESS) {
 mach_error("port_allocate:", ret);

 return -1;
 }

 return 0;
}

AP 9/01

Registering with the Name Service

include <mach/mach.h>
include <servers/netname.h>

include <mach/message.h>
include <mach/port.h>

int allocate_and_check_in_port(char* name,port_name_t* port) {
/* allocate a new port and check the name in with netmsgserver*/

 kern_return_t ret;
 netname_name_t n_name;

 ret = port_allocate(task_self(), port);
 if (ret != NETNAME_SUCCESS) return -1;

 strncpy(n_name, name, sizeof(n_name));
 ret = netname_check_in(name_server_port, n_name,
 task_self(), *port);
 if (ret != NETNAME_SUCCESS) return -2;

 return 0;

}

AP 9/01

Looking up a Port

int lookup_port(char * name, port_name_t * port) {

 /* lookup a port registered with netmsgserver */

 kern_return_t ret;

 netname_name_t n_name;

 strncpy(n_name, name, sizeof(n_name));

 /*the pseudo name “*“ initiates a broadcast on the net*/

 if ((ret = netname_look_up(name_server_port, “*“,
 n_name, port)) != NETNAME_SUCCESS) {
 mach_error("netname_lookup", ret);

 return -1;

 }

 return 0;

}

AP 9/01

Programming with Mach IPC

• Interface definition file packets.defs - Mach 3

subsystem packets 0;
ServerPrefix Serv_;

include <mach/mach_types.defs>

routine send_packet(
RequestPort server: mach_port_t;
in count: int

);

simpleroutine server_exit(
RequestPort server: mach_port_t

);

AP 9/01

Mach Interface Generator (MIG)

AP 9/01

MIG Operations

AP 9/01

MIG Declarations - EBNF

in | out | inout

| RequestPort | ReplyPort | WaitTime |
MsgType.

::=specification

[specification] var-name : type [, dealloc-
flag].

::=parameter

parameter { ; parameter }.::=parameter-list

simpleroutine | routine

| simpleprocedure | procedure.

::=operation-type

operation-type op-name (parameter-list);

| function op-name (parameter-list) : func-
type;.

::=operation

AP 9/01

Network-transparent IPC

• netmsgserver extends reach of local IPC
– uses TCP/IP to transmit IPC messages to remote sites

– provides a network-wide name service for port lookup

