
AP 9/01

Unit 9: Windows 2000 Networking

9.2. Win32 Socket Programming

AP 9/01

Win32 Socket Programming

Berkeley Socket programs will port to Window Sockets

Exceptions:

• Call WSAStartup() to initialize Windows Socket DLL

• Use ioctlsocket() (non-portable) to configure the socket

• _read() and _write() can be used on sockets, but only
after converting the socket descriptor to a file handle via
_open_osfhandle()

• Use closesocket() (non-portable) rather than close to
close a socket

• Call WSACleanup() to shut down the DLL

AP 9/01

Berkeley 4.3 UNIX Sockets –
connection-oriented

Server

socket()

bind()

listen()

accept()

read()

write()

socket()

Client

connect()

write()

read()

connection establishment

data (request)

data (reply)

blocks until connection
from client

AP 9/01

Berkeley 4.3 UNIX Sockets -
connectionless

Server

socket()

bind()

recvfrom()

sendto()

socket()

Client

bind()

sendto()

recvfrom()

data (request)

data (reply)

blocks until data
received from client

AP 9/01

SYS V.3 Transport Layer Interface –
connection-oriented

Server t_open()

t_bind()

t_listen()

t_rcv()

t_snd()

t_open()

Client

t_conect()

t_snd()

t_rcv()

data (request)

data (reply)

blocks until connection
from client

t_alloc() t_bind()

t_alloc()

t_accept()

connection establishment

AP 9/01

SYS V.3 Transport Layer Interface -
connectionless

Server

t_open()

t_bind()

t_rcvudata()

t_sndudata()

t_open()

Client

t_sndudata()

t_rcvudata()

data (request)

data (reply)

blocks until data
received from client

t_alloc() t_bind()

t_alloc()

AP 9/01

Accept a connection on a socket

• s: A descriptor identifying a socket which is listening for
connections after a listen().

• addr: An optional pointer to a buffer which receives the address of
the connecting entity, as known to the communications layer. The
exact format of the addr argument is determined by the address
family established when the socket was created.

• addrlen: An optional pointer to an integer which contains the
length of the address addr.

#include <winsock.h>
SOCKET PASCAL FAR accept (

SOCKET s, struct sockaddr FAR * addr,
int FAR * addrlen);

AP 9/01

Associate a local address with a
socket

• s: A descriptor identifying an unbound socket.
• name: The address to assign to the socket.
• namelen: length of the name

– struct sockaddr {
u_short sa_family;
char sa_data[14];
};

#include <winsock.h>
int PASCAL FAR bind (

SOCKET s, const struct sockaddr FAR * name,
int namelen);

AP 9/01

Internet address family

• In the Internet address family, a name consists of several
components.

• For SOCK_DGRAM and SOCK_STREAM, the name consists of
three parts:
– a host address, the protocol number (set implicitly to UDP or TCP, respectively),

and a port number which identifies the application.
– If an application does not care what address is assigned to it, it may specify an

Internet address equal to INADDR_ANY, a port equal to 0, or both.
– If the Internet address is equal to INADDR_ANY, any appropriate network

interface will be used; this simplifies application programming in the presence
of multi-homed hosts.

– If the port is specified as 0, the Windows Sockets implementation will assign a
unique port to the application with a value between 1024 and 5000.

• The application may use getsockname() after bind() to learn the
address that has been assigned to it
– getsockname() will not necessarily fill in the Internet address until the socket is

connected; several Internet addresses may be valid if the host is multi-homed.

AP 9/01

Example: bind to an reserved port

SOCKADDR_IN sin;
SOCKET s;
u_short alport = IPPORT_RESERVED; /* 1024 */
sin.sin_family = AF_INET;
sin.sin_addr.s_addr = 0;
for (;;) {

sin.sin_port = htons(alport);
if (bind(s, (LPSOCKADDR)&sin, sizeof (sin)) == 0) {

/* it worked */
}
if (GetLastError() != WSAEADDRINUSE) {
/* fail */
}
alport--;
if (alport == IPPORT_RESERVED/2) {
/* fail--all unassigned reserved ports are in use. */
}

}

AP 9/01

Close a socket

• This function closes a socket.
– releases the socket descriptor s, so that further references to s will fail

with the error WSAENOTSOCK.
– If this is the last reference to the underlying socket, the associated

naming information and queued data are discarded.

• Semantics influenced by socket options:

#include <winsock.h>
int PASCAL FAR closesocket (SOCKET s);

YesGracefulNon-zeroSO_LINGER

NoHardZeroSO_LINGER

NoGracefulDon‘t careSO_DONTLINGER

Wait for close?Type of closeIntervalOption

AP 9/01

Establish a connection to a peer

• s: A descriptor identifying an unconnected socket.
• name: The name of the peer to which the socket is to

be connected.
• namelen: The length of the name.
• create a connection to the specified foreign association.

The parameter s specifies an unconnected datagram or
stream socket

#include <winsock.h>
int PASCAL FAR connect (SOCKET s,

const struct sockaddr FAR * name,
int namelen);

AP 9/01

Establish a socket to listen for
incoming connection

• s: A descriptor identifying a bound, unconnected socket.

• backlog: The maximum length to which the queue of
pending connections may grow.

• typically used by servers that could have more than one
connection request at a time:
– if a connection request arrives with the queue full, the client will

receive an error with an indication of WSAECONNREFUSED

#include <winsock.h>
int PASCAL FAR listen (SOCKET s, int backlog);

AP 9/01

Receive data from a socket

• s: A descriptor identifying a connected socket.

• buf: A buffer for the incoming data.

• len: The length of buf.

• flags: Specifies the way in which the call is made.

#include <winsock.h>
int PASCAL FAR recv (SOCKET s,

char FAR * buf, int len, int flags);

AP 9/01

Receive a datagram and store the
source address.

• s: A descriptor identifying a bound socket.

• buf: A buffer for the incoming data.

• len: The length of buf.

• flags: Specifies the way in which the call is made.

• from: An optional pointer to a buffer which will hold the source
address upon return.

• fromlen: An optional pointer to the size of the from buffer.

#include <winsock.h>
int PASCAL FAR recvfrom (SOCKET s,

char FAR * buf, int len, int flags,
struct sockaddr FAR * from, int FAR * fromlen);

AP 9/01

Determine the status of one or more
sockets, waiting if necessary.

• nfds: This argument is ignored and included only for the sake of
compatibility.

• readfds: An optional pointer to a set of sockets to be checked for
readability.

• writefds: An optional pointer to a set of sockets to be checked for
writability

• exceptfds: An optional pointer to a set of sockets to be checked
for errors.

• timeout: The maximum time for select() to wait, or NULL for
blocking operation.

#include <winsock.h>
int PASCAL FAR select (int nfds, fd_set FAR * readfds,
fd_set FAR * writefds, fd_set FAR * exceptfds,
const struct timeval FAR * timeout);

AP 9/01

Send data on a connected socket.

• s: A descriptor identifying a connected socket.

• buf: A buffer containing the data to be transmitted.

• len: The length of the data in buf.

• flags: Specifies the way in which the call is made.

#include <winsock.h>
int PASCAL FAR send (SOCKET s,
const char FAR * buf, int len, int flags);

AP 9/01

Send data to a specific destination

• s: A descriptor identifying a socket.

• buf: A buffer containing the data to be transmitted.

• len: The length of the data in buf.

• flags: Specifies the way in which the call is made.

• to: An optional pointer to the address of the target
socket.

• tolen: The size of the address in to.

#include <winsock.h>
int PASCAL FAR sendto (SOCKET s,

const char FAR * buf, int len, int flags,
const struct sockaddr FAR * to, int tolen);

AP 9/01

Create a socket

• af: An address format specification. The only format
currently supported is AF_INET, which is the ARPA
Internet address format.

• type: A type specification for the new socket.

• protocol: A particular protocol to be used with the
socket, or 0 if the caller does not wish to specify a
protocol.

#include <winsock.h>
SOCKET PASCAL FAR socket (

int af, int type, int protocol);

