
AP 9/011

Unit 5: System Mechanisms

5.1. Object Manager, Trap Dispatching,
Synchronization

AP 9/012

System Mechanisms

• Trap dispatching,
– interrupts,

– deferred procedure calls (DPCs),

– asynchronous procedure calls (APCs)

– Exception dispatching,

– system service dispatching

• Executive object manager

• Synchronization, spinlocks, kernel dispatcher objects

• Local procedure calls

AP 9/013

Trap dispatching

Trap: processor‘s mechanism to capture executing thread
– Switch from user to kernel mode
– Interrupts – asynchronous
– Exceptions - synchronous

Interrupt
dispatcher

System
service

dispatcher

Interrupt
service
routines

Interrupt
service
routines

Interrupt
service
routines

System
services

System
services

System
services

Exception
dispatcher

Exception
handlers

Exception
handlers

Exception
handlers

Virtual memory
manager‘s pager

Interrupt

System service call

HW exceptions
SW exceptions

Virtual address
exceptions

AP 9/014

Interrupt dispatching

• HW interrupts are mapped to
interrupt request levels (IRQLs)
– Synchronize access to kernel-mode data structures
– Masking interrupts

High

Power

Interprocessor
notification

Clock

Device n

Device 1

Dispatch/DPC

APC

Passive/low

IRQL settings
Processor A

IRQL = clock

Interrupts
masked on
Processor A

Processor B

IRQL = dispatch

Interrupts masked on
Processor B

AP 9/015

Interrupt processing

• Interrupt dispatch table (IDT)
– Links to interrupt service routines

• x86:
– Interrupt controller interrupts processor (single line)

– Processor queries for interrupt vector; uses vector as index to IDT

• Alpha:
– PAL code (Privileged Architecture Library – Alpha BIOS) determines

interrupt vector, calls kernel

– Kernel uses vector to index IDT

• After ISR execution, IRQL is lowered to initial level

AP 9/016

Interrupt object

• Allows device drivers to register ISRs for their devices
– Contains dispatch code (initial handler)

– Dispatch code calls ISR with interrupt object as parameter
(HW cannot pass parameters to ISR)

• Connecting/disconnecting interrupt objects:
– Dynamic association between ISR and IDT entry

– Loadable device drivers (kernel modules)

– Turn on/off ISR

• Interrupt objects can synchronize access to ISR data
– Multiple instances of ISR may be active simultaneously (MP machine)

– Multiple ISR may be connected with IRQL

AP 9/017

Predefined IRQLs

• High
– used when halting the system (via KeBugCheck())

• Power fail
– originated in the NT design document, but has never been used

• Inter-processor interrupt
– used to request action from other processor (dispatching a thread,

updating a processors TLB, system shutdown, system crash)

• Clock
– Used to update system‘s clock, allocation of CPU time to threads

• Profile
– Used for kernel profiling (see Kernel profiler – Kernprof.exe, Res Kit)

AP 9/018

Predefined IRQLs (contd.)

• Device
– Used to prioritize device interrupts

• DPC/dispatch and APC
– Software interrupts that kernel and device drivers generate

• Passive
– No interrupt level at all, normal thread execution

AP 9/019

Software interrupts

• Initiating thread dispatching
– DPC allow for scheduling actions when kernel is deep within many

layers of code

– Delayed scheduling decision, one DPC queue per processor

• Handling timer expiration

• Asynchronous execution of a procedure in context of a
particular thread

• Support for asynchronous I/O operations

AP 9/0110

Deferred Procedure Calls (DPCs)

• DPCs provide the OS with the capability to generate an
interrupt and execute a system function in kernel mode

• Kernel uses DPCs
– To process timer expiration (and release waiting threads)

– To reschedule processor after a thread‘s quantum expires

• Device drivers use DPCs to complete I/O requests

• DPCs are represented by DPC objects
– Containing address of a system functions to be called

– Waiting DPC routines are stored in per-processor DPC queues

– DPC queues are ordered FIFO by default

AP 9/0111

DPC

Delivering a DPC

DPC routines can call kernel functions
but can‘t call system services, generate
page faults, or create or wait on objects

DPC routines can‘t
assume what
process address
space is currently
mapped

Interrupt
dispatch table

high

Power failure

Dispatch/DPC

APC

Low

DPC

1. Timer expires, kernel
queues DPC that will
release all waiting threads
Kernel requests SW int.

DPCDPC

DPC queue

2. DPC interrupt occurs
when IRQL drops below
dispatch/DPC level

dispatcher

3. After DPC interrupt,
control transfers to
thread dispatcher

4. Dispatcher executes each DPC
routine in DPC queue

AP 9/0112

Asynchronous Procedure Calls (APCs)

• Execute code in context of a particular user thread
– APC routines can acquire resources (objects), incur page faults,

call system services

• APC queue is thread-specific

• User mode & kernel mode APCs
– Permission required for user mode APCs

• Executive uses APCs to complete work in thread space
– Wait for asynchronous I/O operation

– Emulate delivery of POSIX signals

– Make threads suspend/terminate itself (env. subsystems)

• APCs are delivered when thread is in alertable wait state
– WaitForMultipleObjectsEx(), SleepEx()

AP 9/0113

Exception dispatching

• Structured exception handling;
– Accessible from MS VC++ language: __try, __except, __finally
– See Jeffrey Richter, „Advanced Windows“, MS Press
– See Johnson M.Hart, „Win32 System Programming“, Addison-Wesley

Trap
handler Exception

dispatcher)

Debugger
(first chance)

Frame-based
handlers

Debugger
(second chance)

Environment
subsystem
Kernel default

handler

(Exception
frame, client
thread ID)

exception

Unhandled exceptions are passed to
next handler

Exception dispatcher sends debug message to
Debugger via LPC/excepion port & session manager process

AP 9/0114

Internal Win32 exception handler

• Processes unhandled exceptions
– At top of stack, declared in StartOfProcess()/StartOfThread()

void Win32StartOfProcess(LPTHREAD_START_ROUTINE lpStartAddr,

 LPVOID lpvThreadParm) {

__try {

 DWORD dwThreadExitCode = lpStartAddr(lpvThreadParm);

 ExitThread(dwThreadExitCode);

} __except(UnhandledExceptionFilter(

 GetExceptionInformation())) {

 ExitProcess(GetExceptionCode());

}

}

AP 9/0115

System Service Dispatching

System service
dispatch table

System
service

dispatcher

0
1
2
3

n

Trap handler

System service 2

System
service
call

System service dispatch is triggered
by int 2E on Intel x86,
syscall inst. on Alpha

Int 2E

(call NtWriteFile,
dismiss interrupt)

Int 2E

Call NtWriteFile()

Call WriteFile()

• Kernel‘s trap handler dispatches interrupts, exceptions,
and system service calls

System
service

extension

2 built-in tables:
-core OS services
-USER/GDI services

NTDLL.DLL

User mode
kernel mode

AP 9/0116

Object Manager

• Common mechanism for using system resources

• Isolate protection to one location in OS (C2 security)

• Accounting: charge processes for resource usage

• Object naming scheme
– Incorporate existing objects: devices, files, directories

• Support various OS personalities
– resource inheritance (Win32, POSIX)

– Case-sensitive filenames (POSIX)

• Uniform rules for object retention / lifecycle

Internally: executive objects and kernel objects (simpler)
Many executive objects encapsulate kernel objects

AP 9/0117

Executive Objects

Mechanism to pass messages between processesPort

Security profile (security ID, user rights) of a process or
thread

Access token

Instance of an opened file or I/O deviceFile

Region of shared memory (file mapping object in Win32)Section

Executable entity within a processThread

Virtual address space and control information necessary
for execution of thread objects

Process

Mechanism for referring to an object name indirectlySymbolic link

Container object for other objects: implement hierarchical
namespace to store other object types

Object directory

RepresentsObject type

AP 9/0118

Executive Objects (contd.)

Reference to registry data – visible in object manager
namespace

Key

Mechanism for measuring execution time for a process
within an address range

Profile

Method for threads to enqueue/dequeue notifications of
I/O completions (Win32 I/O completion port)

Queue

Mechanism to notify a thread when a fixed period of time
elapses

Timer

Synchronization construct to serialize resource accessMutant

Counter and resource gate for critical sectionSemaphore

Object with persistent state (signaled or not) usable for
synchronization or notification

Event

RepresentsObject type

AP 9/0119

Object name
Object directory
Security descriptor
Quota charges
Open handle count
Open handles list
Object type
Reference count

Object-specific data

Object Structure

Object header

Object body

Process 1

Process 2

Process 3

Type name
Access types
Synchronizable? (Y/N)
Pageable? (Y/N)
Methods:
 open, close, delete
 parse, security,
 query name

Type object contains static, object-type specific data:
- shared among all instances of an object type
- link all instances together (enumeration)

Type object

Object name
Object directory
Security descriptor
Quota charges
Open handle count
Open handles list
Object type
Reference count

Object-specific data

Object name
Object directory
Security descriptor
Quota charges
Open handle count
Open handles list
Object type
Reference count

Object-specific data

AP 9/0120

Object Methods

• Process opens handle to object \Device\Floppy0\docs\resume.doc
• Object manager traverses name tree until it reaches Floppy0
• Calls parse method for object Floppy0 with arg \docs\resume.doc

When a process reads/changes protection of an objects, such
as a file, that exists in a secondary object domain

Security

When the object manager is searching for an object name that
exists in a secondary object domain

Parse

When a thread requests the name of an object, such as a file,
that exists in a secondary object domain

Query name

Before the object manager deletes an objectDelete

When an object handle is closedClose

When an object handle is openedOpen

When method is calledMethod

Example:

AP 9/0121

Object reference counting –
lifecycle

Application can ensure
that an object and its
name remain in memory
by keeping a handle
to the object open

Handle table

Handles

Index

Handle table

Index

DuplicateHandle()

Process A

Process B

Event object

HandleCount = 2
ReferenceCount=1

Other structure

Event object

HandleCount = 1
ReferenceCount=0

AP 9/0122

Object Names
Standard Object Directories

Names of objects specific to security subsystem\security

Port objects used by remote procedure calls (RPCs)\RPCControl

Names of types of objects\ObjectTypes

Section names for mapped national language support tables\nls

Section names and path for known DLLs (mapped by the system at
startup time)

\KnownDlls

Win32 subsystem ports and window stations\windows

File system driver objects and file system recognizer device objects\FileSystem

Driver objects\driver

Device objects\device

Mutexes, events, semaphores, waitable timers, and section objects\BaseNamedObjects

MS-DOS device names (\DosDevice is a symbolic link to this dir)\??

Types of Object Names StoredDirectory

AP 9/0123

Wino Object Names (contd.)

• Only \BaseNamedObjects and \?? visible to user
programs

• Object names are global on a single computer
– Not visible across the network

– Object manager‘s parse method is hook to remote objects

• I/O manager & remote files:
– When asked to open remote file, Object Manager contact I/O manag.

– I/O manager calls network redirector

– Server code on remote machine calls remote object manager and I/O
manager and delivers data back

AP 9/0124

Object Names (contd.)

• Only \BaseNamedObjects and \?? visible to user
programs

• Object names are global on a single computer
– Not visible across the network

– Object manager‘s parse method is hook to remote objects

• I/O manager & remote files:
– When asked to open remote file, Object Manager contact I/O manag.

– I/O manager calls network redirector

– Server code on remote machine calls remote object manager and I/O
manager and delivers data back

AP 9/0125

Kernel Synchronization

Processor BProcessor A

do
 acquire_spinlock(DPC)
until (SUCCESS)

begin
 remove DPC from queue
end

release_spinlock(DPC)

do
 acquire_spinlock(DPC)
until (SUCCESS)

begin
 remove DPC from queue
end

release_spinlock(DPC)

.

.

.

.

.

.

Critical section

spinlock

DPC DPC

A spinlock is a locking primitive associated
with a global data structure, such as the DPC queue

AP 9/0126

Executive Synchronization

• Waiting on Dispatcher Objects – outside the kernel

Thread waits
on an object

handle

Create and initialize thread object

Initialized

Ready

Transition

Waiting

Running

Terminated

Standby

Wait is complete;
Set object to

signaled state

Interaction with thread scheduling

AP 9/0127

Interactions between Synchronization
and Thread Dispatching

1. User mode thread waits on an event object‘s handle

2. Kernel changes thread‘s scheduling state from ready to
waiting and adds thread to wait-list

3. Another thread sets the event

4. Kernel wakes up waiting threads; variable priority threads get
priority boost

5. Dispatcher re-schedules new thread – it may preempt
running thread it it has lower priority and issues software
interrupt to initiate context switch

6. If no processor can be preempted, the dispatcher places the
ready thread in the dispatcher ready queue to be scheduled
later

AP 9/0128

What signals an object?

Dispatcher
object

System events
and resulting
state change

Effect of signaled state
on waiting threads

nonsignaled signaled

Owning thread releases mutex

Resumed thread acquires mutex

Kernel resumes one
waiting thread

Mutex (kernel mode)

nonsignaled signaled

Owning thread or other
thread releases mutex

Resumed thread acquires mutex

Kernel resumes one
waiting thread

Mutex
(exported to user mode)

nonsignaled signaled

One thread releases the
semaphore, freeing a resource

A thread acquires the semaphore.
More resources are not available

Kernel resumes one
or more waiting threads

Semaphore

AP 9/0129

A thread reinitializes
the thread object

What signals an object? (contd.)
Dispatcher object System events and resulting

state change
Effect of signaled state

on waiting threads

nonsignaled signaled

A thread sets the event

Kernel resumes one
or more threads

Kernel resumes one
or more waiting threads

Event

nonsignaled signaled

Dedicated thread sets one
event in the event pair

Kernel resumes the
other dedicated thread

Kernel resumes waiting
dedicated thread

Event pair

nonsignaled signaled

Timer expires

A thread (re) initializes the timer

Kernel resumes all
waiting threads

Timer

nonsignaled signaled

Thread terminates

Kernel resumes all
waiting threads

Thread

AP 9/0130

Local Procedure Calls (LPCs)

• IPC – high-speed message passing

• Not available through Win32 API – W2K OS internal

Application scenarios:
– RPCs on the same machine are implemented as LPCs

– Some Win32 APIs result in sending messages to Win32 subsyst. proc.

– WinLogon uses LPC to communicate with local security authentication
server process (LSASS)

– Security reference monitor uses LPC to communicate with LSASS

• LPC communication:
– Short messages < 256 bytes are copied from sender to receiver

– Larger messages are exchanged via shared memory segment

– Server (kernel) may write directly in client‘s address space

AP 9/0131

Port Objects

• LPC exports port objects to maintain state of
communication:
– Server connection port: named port, server connection request point

– Server communication port: unnamed port, one per active client,
used for communication

– Client communication port: unnamed port a particular client thread
uses to communicate with a particular server

– Unnamed communication port: unnamed port created for use by
two threads in the same process

• Typical scenario:
– Server creates named connection port

– Client makes connection request

– Two unnamed ports are created, client gets handle to server port,
server gets handle to client port

AP 9/0132

Use of LPC ports

Client address
space

Kernel address
space

Server address
space

Message
queue

Connection port

Client
communication

port

Server
communication

port

Shared
section

Client process Server process

Handle

Handle

Server view
of section

Handle

Client view
of section

