
AP 9/011

Unit 4: Memory Management

4.2. Windows 2000 Memory Management Internals

AP 9/012

Windows 2000
Memory Management Internals

Agenda:

• Introduction

• Process Memory

• Free Memory

• System Memory

AP 9/013

Windows 2000
Memory Manager

• Provides 4 GB flat virtual address space
(32-bit addresses)

• Exports memory-mapped files
• Allows pages shared between processes
• Provides support for file system

cache manager
• Windows 2000 enhancements:

– Integrated support for Terminal Server
– Ability to use up to 64 GB physical memory
– Performance and scalability improvements
– Driver verifier

AP 9/014

4GB Virtual Address Space

• 2 GB per-process
– Address space of one

process is not directly
reachable from
other processes

• 2 GB systemwide
– The operating system is

loaded here, and appears in
every process’s address
space

– There is no process for “the
operating system” (though
there are processes that do
things for the OS,
more or less in “background”)

.EXE code.EXE code
GlobalsGlobals

Per-thread userPer-thread user
mode stacksmode stacks

Process heapsProcess heaps
.DLL code.DLL code

00000000

7FFFFFFF

Exec, Kernel,Exec, Kernel,
HAL, drivers, per-HAL, drivers, per-

thread kernelthread kernel
mode stacks,mode stacks,
Win32K.SysWin32K.Sys

File system cacheFile system cache
Paged poolPaged pool

Non-paged poolNon-paged poolFFFFFFFF

80000000

Process page tables,Process page tables,
hyperspacehyperspace

C0000000

Unique per
process,
accessible in
user or
kernel mode

System wide,
accessible
only in kernel
mode

Per process,
accessible
only in
kernel mode

AP 9/015

3GB Process Space Option

• Only available on x86
Windows 2000 Advanced
Server

– Boot with /3GB option
in BOOT.INI

– Chief “loser” in system space is
file system cache

• Expands per-process address
space

– But image must be
marked as “large
address space aware”

• 16GB maximum
physical memory

• A stopgap while we wait for
64-bit Windows 2000 (Itanium)

.EXE code.EXE code
GlobalsGlobals

Per-thread userPer-thread user
mode stacksmode stacks

.DLL code.DLL code
Process heapsProcess heaps

Exec, kernel,Exec, kernel,
HAL,HAL,

drivers, etc.drivers, etc.

00000000

BFFFFFFF

FFFFFFFF

C0000000

Unique per
process,
accessible in
user or kernel
mode

System wide,
accessible
only in kernel
mode

Per process,
accessible
only in
kernel mode

Process page tables,Process page tables,
hyperspacehyperspace

AP 9/016

Physical Memory

• Maximum on Windows NT 4.0 is 4 GB
• Maximum on Windows 2000 is 64 GB

– Alpha: 32 GB
– x86: Professional, Server: 4 GB

Advanced Server: 8 GB
Datacenter: 64 GB

• Obsoletes PSE driver from Intel that allowed x86 systems with > 4GB to
use additional memory as RAM disk

• Virtual address space is still 4 GB,
so how can you “use” > 4 GB of memory?
– Mapped (cached) files can remain in physical memory
– New extended addressing services allow Win32 processes to allocate physical

memory and map views or “windows” into 2GB process virtual address space
– Alpha only: New “very large memory” (VLM) APIs allow Win32 process to

allocate up to 28 GB
• No views necessary, but requires dealing with 64-bit pointers

AP 9/017

Address Windowing Extension

• General solution to providing access
to large amounts of physical memory
– Platform independent

• Applications allocate physical memory
– Then map views of physical memory into their virtual address space

(can do I/Os to it)

– See new Win32 functions AllocateUserPhysicalPages,
MapUserPhysicalPages (very fast - 4us)

• Look for server applications to take advantage of this

AP 9/018

Sessions

• New memory management object to support
Windows 2000 Advanced Server

• All processes in an interactive session share a:
– Session-specific copy of Win32K.Sys and display drivers
– Instance of Winlogon and CSRSS
– Session working set

8000000080000000 System code (NTOSKRNL, HAL, bootSystem code (NTOSKRNL, HAL, boot
drivers); initial drivers); initial nonpaged nonpaged poolpool

A0000000A0000000 Win32k.sys *8MBWin32k.sys *8MB

A0800000A0800000 Session Working Set ListsSession Working Set Lists

x86x86

Mapped Views for SessionMapped Views for Session

Paged Pool for SessionPaged Pool for Session

A0C00000A0C00000

A2000000A2000000

AP 9/019

Agenda

• Introduction

• Process Memory

• Free Memory

• System Memory

AP 9/0110

All* Committed Virtual Address Space
is Mapped To Files

• Ranges of virtual address space are mapped
to ranges of blocks within disk files
– These files are the “backing store” for virtual

address space

• Commonly-used files are:
– The system paging file

• For writeable, nonshareable pages

– For read-only application-defined code and for
shareable data

• Executable program or DLL

• Can set up additional file/virtual address space
relationships at run time (CreateFileMapping API)

**almost

AP 9/0111

Virtual View Of A Process

Screen snapshot from:Screen snapshot from:
Programs | SDK Tools | Process WalkerPrograms | SDK Tools | Process Walker
Process | Load Process | notepadProcess | Load Process | notepad

AP 9/0112

Working Set

• Working set: The subset of the virtual
address space in physical memory
– Essentially, all the pages the process can reference without incurring a

page fault
– Upper limit on size for each process
– When limit is reached, a page must be

released for every page that’s brought in
(“working set replacement”)

• Working set limit: The maximum
pages the process can own
– Default value for new processes
– System-wide maximum computed at boot

time (see MmMaximumWorkingSetSize)

AP 9/0113

Working Set List
A FIFO list for each process

• A process always starts with an empty working set
– Pages itself into existence

– Many page faults may be resolved from
memory (to be described later)

PerfMon
Process “WorkingSet”

newer pages older pages

AP 9/0114

Soft Versus Hard
Page Faults

• Hard page faults involve a disk read
– Some hard page faults are unavoidable

• Code is brought into physical memory
(from .EXEs and .DLLs) via page faults

• The file system cache reads data from cached
files in response to page faults

• Soft page faults are satisfied in memory
– A shared page that’s valid for one process can be

faulted into other processes
– Pages can be faulted back into a process from the

standby and modified page list (described later)

• Performance counters:
– “Page faults/sec” versus “page reads/sec”
– “Demand zero” faults/second
– See chapter “Detecting Memory Bottlenecks”

in Windows NT 4.0 Workstation Resource Guide

AP 9/0115

Working Set Replacement

• When working set “count” = working set size,
must give up pages to make room for new pages

• Page replacement is ”modified FIFO”
– Windows 2000 on uniprocessor x86 implements

“least recently accessed”

PerfMon
Process “WorkingSet”

To standby
or modified

page list

AP 9/0116

Balance Set Manager

• Nearest thing Windows 2000 has to a “swapper”
– Balance set = sum of all inswapped working sets

• Balance Set Manager is a system thread
– Wakes up every second. If paging activity high or

memory needed:
• Trims working sets of processes
• If thread in a long user-mode wait, marks kernel stack

pages as pageable
• If process has no nonpageable kernel stacks,

“outswaps” process
• Triggers a separate thread to do the “outswap” by gradually reducing target process’s working set

limit to zero

• Evidence: Look for threads in “Transition” state in PerfMon
– Means that kernel stack has been paged out, and thread is waiting for memory to be

allocated so it can be paged back in

• This thread also performs a scheduling-related function
– Priority inversion avoidance

AP 9/0117

Memory Management Information
Task manager processes tab

• “Mem Usage” = physical memory
used by process (working set size,
not working set limit)

• “VM Size” = private (not shared)
committed virtual space in
processes

• “Mem Usage” in status bar is
same as “commit charge/commit
limit” in “Performance” tab (see
next slide) - not same as “Mem
Usage” column here!

22

44

11

33

11

33

22

44

Screen snapshot from: Task Manager | Processes tab

AP 9/0118

Memory Management Information
PerfMon - process object

• “Working Set” =
working set size (not limit)

• “Private Bytes” = same as
“VM Size” from Task Manager
Processes list

• “Virtual Bytes” = committed
virtual space, including
shared pages

• Also: In Threads object, look
for threads in Transition state
- evidence of swapping
(usually caused by severe
memory pressure)

Screen snapshot from: Performance Monitor
counters from Process object

22

11

66

11

22

66

AP 9/0119

Process Memory Used

• To get total of all process working sets:
– In Perfmon, look at “working set size” of “_Total” process (not a real

process)

• This will be higher than actual, because shared pages
are counted in
each process

• To get exact total:
– Process memory really used =

Total physical memory - OS memory
used - Available (free) memory

– (see end of presentation)

AP 9/0120

Memory information for a process
Resource Kit pview.exe

Virtual sizes of committed
sections of image and DLLs
or total of all (total selected)

Virtual sizes of sections
mapped after image startup
(including DLLs loaded with
LoadLibrary)

Process-private committed
virtual address space (i.e.
paging file allocation)
note, “writecopy” = “writeable, but
not written to yet”. Windows NT
has yet to create process-private
pages for these; they are still
shared; they become “private
commit” when written to

Some, but not all, of this info is
also shown by Process Viewer’s
“memory detail” button

AP 9/0121

Memory information for a process
Resource Kit pview.exe

22

11

77

Total virtual address space
(committed PLUS reserved, private
and shared)

WS = working set (physical)

PF = paging file space allocated (not
necessarily written to!)

Same as PerfMon “private bytes”,
TaskMan “VM size”

Systemwide paged pool (virtual) and
nonpaged pool used by this process

Systemwide paged pool

Systemwide nonpaged pool

Paging file space allocated by all
processes + OS
Note, “limits” in the last three groups
are per-process limits; i.e., how much
each process can use of these

AP 9/0122

Memory Management Information
Task manager performance tab

• “Commit charge total” =
total of private (not shared)
committed virtual space in
all processes; i.e., total of
“VM Size” from processes
display, + Kernel Memory
paged

• “Commit charge limit” =
sum of available physical
memory for processes +
free space in paging file

Screen snapshot from: Task Manager | Performance tabScreen snapshot from: Task Manager | Performance tab

4433
44
33

33

33

44

AP 9/0123

Page Files

• Contiguous page files help!
– Will be contiguous when created if

space available
– Or, can defrag with full Diskeeper or

“CONTIG” (www.sysinternals.com)

• Size depends on virtual memory requirements of
applications and drivers
– Min size should be “max” of normal VM usage

• Hard disk space is cheap
• Thus no pagefile fragmentation

– Max size could be much larger if infrequent demands for large
amounts of pagefile space

• Pagefile extension is deleted on reboot,
thus returning to a contiguous pagefile

AP 9/0124

Page Files

• When page file space runs low
– 1. “System running low on virtual memory”

• First time: Before pagefile expansion

• Second time: When committed bytes reaching commit limit

– 2. “System out of virtual memory”
• Page files are full

• Look for who is consuming pagefile space:
– Process memory leak: Check VM Size (Perfmon “private bytes”)

– Paged pool leak: Check paged pool size
• Run poolmon to see what object(s) are

filling pool

• Could be a result of processes not closing handles - check process
“handle count”

AP 9/0125

Agenda

• Introduction

• Process Memory

• Free Memory

• System Memory

AP 9/0126

Unassigned Physical Memory

• System keeps unassigned (available) physical pages
on one of several lists:
– Free page list

– Modified page list

– Standby page list

– Zero page list

– Bad page list - pages that failed memory test at system startup

• Lists are implemented by entries in
the “PFN database”
– Maintained as FIFO lists or queues

AP 9/0127

Paging Dynamics

StandbyStandby
PagePage
ListList

ZeroZero
PagePage
ListList

FreeFree
PagePage
ListList

ProcessProcess
WorkingWorking

SetsSets

page read frompage read from
disk or kerneldisk or kernel
allocationsallocations

demand zerodemand zero
page faultspage faults

working setworking set
replacementreplacement

ModifiedModified
PagePage
ListList

modifiedmodified
pagepage
writerwriter

zerozero
pagepage

threadthread

““softsoft””
pagepage
faultsfaults

BadBad
PagePage
ListList

Private pagesPrivate pages
at process exitat process exit

AP 9/0128

Standby And Modified
Page Lists

• Used to:
– Avoid writing pages back to disk too soon
– Avoid releasing pages to the free list too soon

• The system can replenish the free page list by taking pages from
the top of the standby page list
– This breaks the association between the process and the

physical page
– I.e., the system no longer knows if the page still contains the process’s info

• Pages move from the modified list to the standby list
– Modified pages’ contents are copied to the pages’ backing stores (usually the

paging file) by the modified page writer (see next slide)
– The pages are then placed at the bottom of the standby page list

• Pages can be faulted back into a process from the standby and
modified page list
– The SPL and MPL form a system-wide cache of “pages likely

to be needed again”

AP 9/0129

Modified Page Writer

• Moves pages from modified to standby list, and copies
their contents to disk
– I.e., this is what writes the paging file and updates mapped files

(including the file system cache)

• Two system threads
– One for mapped files, one for the paging file

• Triggered when
– Memory is overcomitted

(too few free pages)
– Or modified page

threshold is reached
– Does not flush entire

modified page list

for memory sizefor memory size

modifiedmodified
pagepage

thresholdthreshold

retainretain
modifiedmodified

pagespages

small (<13 MB)small (<13 MB) 100100 4040

medium (13-19)medium (13-19) 150150 8080

large (19-32)large (19-32) 300300 150150

huge (over 32 M)huge (over 32 M) 600600 256256

AP 9/0130

Zero Page List

• Large uninitialized data regions are mapped to demand
zero pages

• On first reference to such a page, a page is allocated from
the zero page list
– No need to read zeroes from disk to provide the “data”
– After modification, these pages are mapped to the paging file

• Zero page list is replenished by the “zero page thread”
– Thread 0 in “System” process (routine name is Phase1Initialization)
– Runs at priority 0

(lower than can be reached by Win32 applications, but above
idle threads)

– One per system (even on SMP)
– Takes pages from the free page list, fills them with zeroes, and puts them on

the zero page list while the CPU is otherwise idle
– Usually is waiting on an event - which is set when, after resolving a fault,

system notices that zero page list is too small

AP 9/0131

Memory Management Information
Task manager performance tab

“Available” memory = total of
free, zero, and standby lists
(majority usually are standby
pages)

Windows 2000: System cache
= total of cache, paged pool,
system code + size of standby
list

(displayed instead of file cache
which did not include size of
standby list)

Screen snapshot from: Task Manager | Performance tabScreen snapshot from: Task Manager | Performance tab

1

1
2

2

AP 9/0132

Examining Sizes of
Page Lists

• Must use Kernel Debugger

kd> !memusage
!memusage
 loading PFN database..........................
 Zeroed: 0 (0 kb)
 Free: 322 (1288 kb)
 Standby: 1032 (4128 kb)
 Modified: 119 (476 kb)
 ModifiedNoWrite: 0 (0 kb)
 Active/Valid: 2623 (10492 kb)
 Transition: 0 (0 kb)
 Unknown: 0 (0 kb)
 TOTAL: 4096 (16384 kb)

Screen snapshot from: Kernel debugger !memusage command

AP 9/0133

Agenda

• Introduction

• Process Memory

• Free Memory

• System Memory

AP 9/0134

System Memory Usage

• Windows 2000 OS and driver memory usage
breaks down into:
– Nonpageable code

– Pageable code

– File system cache

– Nonpaged pool

– Paged pool

• Let’s start with the memory pools

AP 9/0135

System Memory Pools

• Windows 2000 provides two system memory pools for
the OS and drivers:
– Nonpaged pool (always in physical memory)
– Paged pool (may be paged out)

• Pool sizes are a function of memory size and system
type (Server versus Workstation)
– Can be overidden in Registry:

• HKLM\System\CurrentControlSet\
Control\Session Manager\Executive

– See TechNet articles (search for “nonpaged”)
• http://technet.microsoft.com/cdonline/content/

complete/boes/bo/winntas/technote/planning/
ntdomsiz.htm

AP 9/0136

System Memory Pools

• Nonpaged pool has initial size and upper max
– Upper limit: 256 MB on x86 (128MB on

Windows NT 4.0)
• 128MB for /3GB systems

– Note: Performance counter displays current size
• Maximum size stored in kernel variable

MmMaximumNonPagedPoolInBytes
• Therefore cannot easily tell when

approaching max

• Paged pool limited by pagefile size
– Upper limit: 192MB on x86, 240MB on Alpha

• System cache can be up to 960MB virtual (512MB in
Windows NT 4.0)

AP 9/0137

Memory Management Information
Task manager performance tab

“Kernel Memory Paged” =
physically resident size of
paged pool

“Kernel Memory Nonpaged” =
physical size of nonpaged
pool

Screen snapshot from: Task Manager | Performance tabScreen snapshot from: Task Manager | Performance tab

3

3
4

4

AP 9/0138

Monitoring Pool Usage

• Poolmon.exe in in \support\tools on Windows 2000 CD
• Must first turn on “Pool tagging” with GFLAGS

(ResKit) and reboot
• Shows paged and nonpaged pool consumption by data

structure “tag” (no official list - many are self-explanatory)

• ? Displays help, p toggles between nonpaged, paged pool, or both
• b Sorts by total # of bytes

AP 9/0139

Driver Verifier

• Additional driver integrity checking features in
Windows 2000
– Pool integrity checking (special pool)

– Unmap pageable memory at high IRQL

– Simulating low resource conditions

– API verification

– Memory leak detection

– I/O packet memory verification

• GUI utility to enable (verifier.exe)

• For more info:
– http://www.microsoft.com/hwdev/driver/driververify.htm

AP 9/0140

Driver Verifier

• Verifier.exe

AP 9/0141

Special Pool

• One of the many features in the Driver Verifier is
available on Window NT 4.0 SP4

• Helps catch driver and OS memory corruptions
– Puts read only page before and after each allocation
– Each allocation goes in its own page
– Front of a page (underrun checking)/end of page

(overrun checking)

• To enable on NT4, add special registry keys under:
 HKEY_LOCAL_MACHINE\CurrentControlSet\Control

\Session Manager\Memory Management
• To enable on Windows 2000, use Verifier.exe
• See article Q192486 for details

AP 9/0142

Nonpageable System Code

• Most drivers + parts of
NTOSKRNL.EXE
are nonpaged

• No performance counter to
get total size

• To get size of nonpageable system
code, run \ntreskit\pstat.exe and
add columns 1 and 2

non-paged code
non-paged data
pageable code+data
– output of “drivers” (\ntreskit\drivers.exe)

is similar
– Win32K.Sys is paged, even though it

shows up as nonpaged - must subtract
from list

7 98

7

9
8

AP 9/0143

System Working Set

• Just as processes have working sets, pageable system code and
data lives in a working set

• Pageable components:
– Paged pool
– Pageable code and data in the exec
– Pageable code and data in kernel-mode drivers, Win32K.Sys, graphics drivers,

etc.
– Global file system data cache

• To get physical (resident) size of these with PerfMon, look at:
– Memory | Pool Paged Resident Bytes
– Memory | System Code Resident Bytes
– Memory | System Driver Resident Bytes
– Memory | System Cache Resident Bytes

• NOTE: Memory | Cache bytes counter is really total of these four
“resident” (physical) counters

