Unit 4. Memory Management

4.2. Windows 2000 Memory Management Internals

AP 9/01

Windows 2000
Memory Management Internals

Agenda:

* Introduction

* Process Memory
 Free Memory

¢ System Memory

2 AP 9/01

Windows 2000
Memory Manager

Provides 4 GB flat virtual address space
(32-bit addresses)

Exports memory-mapped files
Allows pages shared between processes

Provides support for file system
cache manager

Windows 2000 enhancements:
— Integrated support for Terminal Server
— Ability to use up to 64 GB physical memory
— Performance and scalability improvements
— Driver verifier

AP 9/01

4GB Virtual Address Space

00000000
Unique per
process,
accessible in
user or
kernel mode

—>

7TFFFFFFF
80000000

Per process,

accessible

only in

kernel mode
C0000000

System wide,

accessible

only in kernel

mode

4 FFFFFFFF

.EXE code
Globals
Per-thread user
mode stacks
Process heaps
.DLL code

Exec, Kernel,
HAL, drivers, per-
thread kernel
mode stacks,
Win32K.Sys

Process page tables,
hyperspace

File system cache
Paged pool
Non-paged pool

2 GB per-process

— Address space of one
process is not directly
reachable from
other processes

2 GB systemwide

— The operating system is
loaded here, and appears in
every process’s address
space

— There is no process for “the
operating system” (though
there are processes that do
things for the OS,
more or less in “background”)

AP 9/01

3GB Process Space Option

00000000
Unique per
process,
accessible in
user or kernel
mode

Per process,
accessible
only in
kernel mode

BFFFFFFF
C0000000

System wide,
accessible
only in kernel

mogde FFFFFFFF

.EXE code
Globals
Per-thread user
mode stacks
.DLL code
Process heaps

Process page tables,
hyperspace

Exec, kernel,
HAL,
drivers, etc.

Only available on x86
Windows 2000 Advanced
Server

— Boot with /3GB option
in BOOT.INI

— Chief “loser” in system space is
file system cache

Expands per-process address
space

— But image must be
marked as “large
address space aware”

16GB maximum
physical memory

A stopgap while we wait for
64-bit Windows 2000 (Itanium)

AP 9/01

Physical Memory

Maximum on Windows NT 4.0 is 4 GB
Maximum on Windows 2000 is 64 GB

— Alpha: 32 GB

— Xx86: Professional, Server: 4 GB
Advanced Server: 8 GB
Datacenter: 64 GB

* Obsoletes PSE driver from Intel that allowed x86 systems with > 4GB to
use additional memory as RAM disk

Virtual address space is still 4 GB,
so how can you “use” > 4 GB of memory?

— Mapped (cached) files can remain in physical memory

— New extended addressing services allow Win32 processes to allocate physical
memory and map views or “windows” into 2GB process virtual address space

— Alpha only: New “very large memory” (VLM) APlIs allow Win32 process to
allocate up to 28 GB
* No views necessary, but requires dealing with 64-bit pointers

AP 9/01

Address Windowing Extension

General solution to providing access

to large amounts of physical memory
— Platform independent

Applications allocate physical memory

— Then map views of physical memory into their virtual address space
(can do I/Os to it)

— See new Win32 functions AllocateUserPhysicalPages,
MapUserPhysicalPages (very fast - 4us)

Look for server applications to take advantage of this

AP 9/01

Sessions

« New memory management object to support
Windows 2000 Advanced Server

« All processes in an interactive session share a:
— Session-specific copy of Win32K.Sys and display drivers
— Instance of Winlogon and CSRSS
— Session working set

x86

80000000 | gystem code (NTOSKRNL, HAL, boot
drivers); initial nonpaged pool

A0000000

A0800000 | Session Working Set Lists
A0C00000

3 A2000000 AP 9/01

Introduction
Process Memory
Free Memory
System Memory

Agenda

AP 9/01

All* Committed Virtual Address Space
Is Mapped To Files

*almost

* Ranges of virtual address space are mapped
to ranges of blocks within disk files

— These files are the “backing store” for virtual
address space

« Commonly-used files are:
— The system paging file
» For writeable, nonshareable pages

— For read-only application-defined code and for
shareable data

« Executable program or DLL

« Can set up additional file/virtual address space
relationships at run time (CreateFileMapping API)

10 AP 9/01

Virtual View Of A Process

-.. Pmcess Walker - notepad.exe - O] x|
Eru:u:ess Sort Wiew Options
Address State Prot Size Bazedddr 0Object Sechion M ame
Q0741000 Free L, B1440 00000000 ﬂ
Q0750000 Cornrnit R 4036 00750000
Q0751000 Free M, 1440 00000000
Q07e0000 Cornrmnit Rt 40968 007&0000
00YE1000 Reserve Mo 126976 00OFE0000
Q0720000 Cornrnit Rt 8132 00730000
00722000 Reserve Mo 7244 00720000
00730000 Cornrmit Rt BREIE 00730000
00740000 Reserve Mo 428768 00730000
______ ODBS0000 Free MA 16443536 00ODODOO
....... D1EA0000 Cororit . RO A036 BA0000 exe .. MAGE ExPOE
M1B41000 Cornrmt M, 20480 O1B40000 exg tewxt IMAGE _EXPOF
MMB4B000 Cormmit RO 2132 OB40000 exe .rdata IMAGE_E=POF
M1B42000 Cormmit A, 8132 OB40000 exe .data IMAGE_EXPOF
M B4AD00 Cornrmit RO 16384 O1B40000 EME TEIC IMAGE_E=POF
M BAEDOD Free M, 1978277888 00000000
FFAF0000 Cornmit RO 4096 YYIF0000 dll MSWCRT. Il
FFAF1000 Cornrnit L, 212992 FPaF0000 dil text MEWVCRT. dIl
FEAZE000 Cormmit RO 24576 FFAF0000 dil .rdata MEWVCRT. I
FRAZBO00 Cornrmit Rt 20480 FFF0000 dil .data MSWCRT. Il
FHA30000 Cornmit Y 4096 YYIF0000 dll MSWCRT. Il
R 000 Cormmit RO 20480 FFAF0000 dil .idata MEWVCRT. dIl
FRAEE000 Free A, 1810432 00000000 j
Hewalk

Screen snapshot from:

Programs | SDK Tools | Process Walker
Process | Load Process | notepad

AP 9/01

Working Set

« Working set: The subset of the virtual
address space in physical memory

— Essentially, all the pages the process can reference without incurring a
page fault

— Upper limit on size for each process
— When limit is reached, a page must be
released for every page that’s brought in
(“working set replacement”)
« Working set limit: The maximum
pages the process can own
— Default value for new processes

— System-wide maximum computed at boot
time (see MmMaximumWorkingSetSize)

12 AP 9/01

Working Set List
A FIFO list for each process

newer pages > older pages

-

s PerfMon s
Process “WorkingSet”

* A process always starts with an empty working set

— Pages itself into existence

— Many page faults may be resolved from
memory (to be described later)

13 AP 9/01

Soft Versus Hard
Page Faults

« Hard page faults involve a disk read

— Some hard page faults are unavoidable

» Code is brought into physical memory
(from .EXEs and .DLLs) via page faults

+ The file system cache reads data from cached
files in response to page faults

« Soft page faults are satisfied in memory

— A shared page that’s valid for one process can be
faulted into other processes

— Pages can be faulted back into a process from the
standby and modified page list (described later)
« Performance counters:
— “Page faults/sec” versus “page reads/sec”
— “Demand zero” faults/second

— See chapter “Detecting Memory Bottlenecks”
in Windows NT 4.0 Workstation Resource Guide

14 AP 9/01

o

s PerfMon s
Process “WorkingSet”

« When working set “count” = working set size, :
must give up pages to make room for new pages Page list

« Page replacement is "'modified FIFO”
— Windows 2000 on uniprocessor x86 implements

“least recently accessed”

15

Working Set Replacement

N

To standby
or modified

16

Balance Set Manager

Nearest thing Windows 2000 has to a “swapper”
— Balance set = sum of all inswapped working sets

Balance Set Manager is a system thread

— Wakes up every second. If paging activity high or
memory needed:
« Trims working sets of processes

+ If thread in a long user-mode wait, marks kernel stack
pages as pageable

+ If process has no nonpageable kernel stacks,
“outswaps” process

« Triggers a separate thread to do the “outswap” by gradually reducing target process’s working set
limit to zero

Evidence: Look for threads in “Transition” state in PerfMon

— Means that kernel stack has been paged out, and thread is waiting for memory to be
allocated so it can be paged back in

This thread also performs a scheduling-related function
— Priority inversion avoidance

AP 9/01

.
@

CNC

17

Memory Management Information
Task manager processes tab

(13 ” .
Mem Usage = phySICal memow %‘Mnduws HT Task Manager o =1 |
Eile Optionz “iew Help

used by process (working set size, .. e @D @

nOt Worklng Set Ilmlt) ImageMame | PID| cPU| cPU Ti. | Mem Usage | i Size | =
“ . » o . Sypstem Idle Pr... 0 97 22418 1E K Ok
VM Size” = private (not shared) Sy o m b mr o mx
. . . _ 24 00 00012 EFEK 1492K
committed virtual space In WINLOGONE.. 400 000nz 0K 712K
SERVICES.EXE 40 00 0:00:04 1024K 1124E
LSAS55.EXE 43 00 0:00:00 200K 948K
prOCGSSGS SPOOLSS.EXE EF 00 0:00:00 EDK 2008K
‘ . - WOUERT io@oomo or e

Mem Usage in status bar 1S clipsiv.exe 30 00 00000 0K 46K
. . SDSRAV.EXE 95 00 0:00:00 20K 57RE
same as “‘commit Chargelcommlt RPCSS.EXE 109 00 00000 20K 820K
C e e ” TCPSWCS.EXE 112 00 0:00:00 172K 495K
TAPISRV EXE 116 00 00000 200K EB4E
|Im|t In Performance tab (See wiksvo.exe 127 oo 0:00:00 Ok 324 K
. EXPLORER.E... 130 00 0:00:58 ZE04K 17ERE
next Sllde) - not same as “Mem PSTORES.EXE 137 00 00000 2K 1812K
" RASMAN.EXE 140 00 0:00:00 44K 1090 K

Usage Column here! :-U;HdeSZE:-:E 14200 n:nn:nul 1604 K 1498!(} -|

End Process |

|Processes 28 |CPU Usage: 3% |Mem Usage; BB 2K / 274772k W
Screen snapshot from: Task Manager | Processes tab @ @
AP 9/01

® 9

Memory Management Information
PerfMon - process object

* “Working Set” =
working set size (not limit)

* “Private Bytes” = same as
“VM Size” from Task Manager
Processes list

* “Virtual Bytes” = committed
virtual space, including
shared pages

« Also: In Threads object, look
for threads in Transition state

- evidence of swapping @\

E Performance Monitor
File Edit “iew Options: Help

Bulo@ +ex| =l

32.0

228 ﬂ

256

224

19 7

E.4

32

1]
Last 4053136 Average 2921185 Min 2306048 Max

(usually caused by severe ®—>

memory pressure)
Screen snapshot from: Performance Monitc@/v

Color Scale Counter Instance Parent Obje
1 0.0000010 Private Bytes E=plorer Frocs
00000070 Virtual Bytes E=plarer Froc:
00000010 ‘working Set E=plorer Frocs

Drata: Current Activity

counters from Process object
18

AP 9/01

19

Process Memory Used

To get total of all process working sets:

— In Perfmon, look at “working set size” of “_Total” process (not a real
process)

This will be higher than actual, because shared pages
are counted in
each process

To get exact total:

— Process memory really used =
Total physical memory - OS memory
used - Available (free) memory

— (see end of presentation)

AP 9/01

Memory information for a process
Resource Kit pview.exe

Process Explode

Process|d 181 POWERPNT.EXE » _ Fe
— Objects — Blaze Priarity Times Yy
P Objectz 29 . e
o B :: Hf:":' sl {5 12SER996 b
Event Ohjects 440 'J ko 00111032 g
Semaphore Dbjects 67 " Idle U 0253619 ||Fa
FMutex Objectz 78 Pe
Section Objects 282 — User Address Space W
T8 BOWERBNT ESE | TotallmageCon =] 17212 Kb ||Pe ~
— Thread Data Hetmecss OKb |[FF
Fri
User PoValue Ox77s72467 ReadCnly Sl |
S kart Add 0T 705 Read\frite 116 Kb
art Address Ls e t'zt'zg wiriteCopy 84 Kb || Pz
B G anaed Execute 13028 Kb || Pe
—~ Thread Times M apped Commit 7340 Kb E ~
% E 1:2339.9% noacosss casn ke L]
186 AR eadLinly
115 IR Readwiite 552 Kb EE
] 00235663 whiteCopy 0Kh L'L
— Thread Prioritp— — Security — Execute 448 Ehb F'Ir »
=
" Highest MI Priveate Commit 13045 Kb || L)
= Above Morma MI Hotcocess 0 Kb || Lir
& Mormal F.Token | ReadOnly 4 kb EE
T.Token | R eadwrite 13016 Kb || =%
" Below Marmal e e 0 Kb H
= Lowest P Execute 28 kb -
[acess |
Dynamic 14 Thread ||| kil &pp E=it Hide ||:

Virtual sizes of committed
sections of image and DLLs
or total of all (total selected)

Virtual sizes of sections
mapped after image startup
(including DLLs loaded with
LoadLibrary)

Process-private committed
virtual address space (i.e.
paging file allocation)

note, “writecopy” = “writeable, but
not written to yet”. Windows NT
has yet to create process-private
pages for these; they are still
shared; they become “private
commit” when written to

Some, but not all, of this info is
also shown by Process Viewer’s
“‘memory detail” button

AP 9/01

T.E

||

(1 = i S

Memory information for a process
Resource Kit pview.exe

=10 =]
=E - ; Refresh Time 22759277
— Basze Priarity Times v Counts
& Momal E 1:2338.996 Peak Waize 69812 Kb
" High Ko 0011 .D@) \size 6928 Kb
" Idle U 00253615 | Fault Cout E2758
Peak 'S 14876 Kb
— Uzer Addrezs Space S 2960 Kb
| TotallmageCon | 17212FE || Peak PF 15216 Kb
Modccess 0 FF 14200 Kb
ReadOnly el ==t | Frvate Pg 14200 Kb
Readwrite 41E KR || Peak Paged 41 Eb
wWiriteCopy o4 Kb ||Paged 9 kKb
Execute 12028 Kb || Peak Mon 19 Kh
M apped Commit 2340 Kb FMonPaged 19 Kb
MoAccess O kb |~ Pooled Quatas
Eg:ﬂ?&::ﬁ; Eg;g EE Peak Paged 1160 kb
“wiriteCopy 0 Kb E_"" ﬁagej ggg EE
Execute 448 K | HM Tags
Feak Mon 201 Eb
Frivate Commit 13048 KR || Cur Mar 214 kb
Modcoess 0 ER || Lim Maon 286 Kb
ReadOnly 4 Kh ||Peak PF 21168 Kb
Feadw/rite 13016 Kb || Cur PF 29556 Kb
wwiriteCopy 0 Kk || Lim PF Urlimited
Execute 28 Kb |
Kil &spp E it Hide |‘ Fisfresh

Y!“!’ aN

VYT

e

Total virtual address space
(committed PLUS reserved, private
and shared)

WS = working set (physical)

PF = paging file space allocated (not
necessarily written to!)

Same as PerfMon “private bytes”,
TaskMan “VM size”

Systemwide paged pool (virtual) and
nonpaged pool used by this process

Systemwide paged pool
Systemwide nonpaged pool

Paging file space allocated by all
processes + OS

Note, “limits” in the last three groups
are per-process limits; i.e., how much

each process can use of these
AP 9/01

22

Memory Management Information

“Commit charge total” =
total of private (not shared) P Lssge
committed virtual space in
all processes; i.e., total of
“VM Size” from processes
display, + Kernel Memory

paged

Totalz Phypzical bemom [K]
« . . ey Handlez 2422 TD[EI|| 81332
Commit charge limit” = I =R T
sum Of ava”able phyS|Ca| Commit Charge [K] K.emel Memaony [K]
T.Dt:al E3096 Total 17924
memory for processes + @ o .
free space in paging file

Task manager performance tab

gtﬂﬁnduws HT Task Manager
File Optionz “iew Help

CPU Uzage Hiztam

FER Uzage bemomy Uzage Histon

&)

Jn"a'nﬂu'll'l'l,Jl"l ,.Jﬁl.,_..

E09EK ;

=1ol=]

FProcezzesz: 38 CPU Uzage: 3%

bdem Lzage: EG)K ! @EK

Screen snapshot from: Task Manager | Performance tab

AP 9/01

Page Files

« Contiguous page files help!

— Will be contiguous when created if
space available

— Or, can defrag with full Diskeeper or
“CONTIG” (www.sysinternals.com)

« Size depends on virtual memory requirements of
applications and drivers

— Min size should be “max” of normal VM usage
» Hard disk space is cheap
» Thus no pagefile fragmentation
— Max size could be much larger if infrequent demands for large
amounts of pagefile space

« Pagefile extension is deleted on reboot,
thus returning to a contiguous pagefile

23

AP 9/01

Page Files

* When page file space runs low

— 1. “System running low on virtual memory”

» First time: Before pagefile expansion

« Second time: When committed bytes reaching commit limit
— 2. “System out of virtual memory”

« Page files are full

* Look for who is consuming pagefile space:

— Process memory leak: Check VM Size (Perfmon “private bytes”)

— Paged pool leak: Check paged pool size

* Run poolmon to see what object(s) are
filling pool

« Could be a result of processes not closing handles - check process
“handle count”

24

AP 9/01

Agenda

Introduction
Process Memory
Free Memory
System Memory

25 AP 9/01

Unassigned Physical Memory

« System keeps unassigned (available) physical pages

on one of several lists:

— Free page list

— Modified page list

— Standby page list

— Zero page list

— Bad page list - pages that failed memory test at system startup
 Lists are implemented by entries in

the “PFN database”

— Maintained as FIFO lists or queues

26 AP 9/01

demand zero
page faults

j‘l

Paging Dynamics

page read from

allocations

=

Process “soft”
Working page
Sets faults
\ working set

replacement

Private pages
at process exit

Standby
Page
List

modified

page
writer

A

Modified
Page
List

disk or kernel —\

A

Free
Page
List

Zero
Page
List

Bad
Page
List

AP 9/01

28

Standby And Modified
Page Lists

Used to:

— Avoid writing pages back to disk too soon
— Avoid releasing pages to the free list too soon

The system can replenish the free page list by taking pages from
the top of the standby page list
— This breaks the association between the process and the
physical page
— l.e., the system no longer knows if the page still contains the process’s info
Pages move from the modified list to the standby list
— Modified pages’ contents are copied to the pages’ backing stores (usually the
paging file) by the modified page writer (see next slide)
— The pages are then placed at the bottom of the standby page list
Pages can be faulted back into a process from the standby and
modified page list
— The SPL and MPL form a system-wide cache of “pages likely
to be needed again”

AP 9/01

Modified Page Writer

* Moves pages from modified to standby list, and copies
their contents to disk

— l.e., this is what writes the paging file and updates mapped files
(including the file system cache)

 Two system threads
— One for mapped files, one for the paging file

° Trlggered_ When . modified retain
— Memory is overcomitted page modified
(too few free pages) for memory size threshold pages
— Or modified page small (<13 MB) 100 40
threshold is reached medium (13-19) 150 80
— Does not flush entire large (19-32) 300 150
modified page list huge (over 32 M) 600 256

29 AP 9/01

30

Zero Page List

Large uninitialized data regions are mapped to demand
Zero pages

On first reference to such a page, a page is allocated from
the zero page list

No need to read zeroes from disk to provide the “data”

— After modification, these pages are mapped to the paging file
Zero page list is replenished by the “zero page thread”

Thread 0 in “System” process (routine name is Phase1Initialization)

Runs at priority 0
(lower than can be reached by Win32 applications, but above
idle threads)

One per system (even on SMP)

Takes pages from the free page list, fills them with zeroes, and puts them on
the zero page list while the CPU is otherwise idle

Usually is waiting on an event - which is set when, after resolving a fault,
system notices that zero page list is too small

AP 9/01

Memory Management Information
Task manager performance tab

gtﬂﬁndnws HT Task Manager o) =]

@-Available” memory = total of Eie Qptions View Help

free, zero, and standby lists - 0 e H
(majority usually are standby

pages)

FMEM Uzage kdemory Uzage Hizton

@windows 2000: System cache

= total of cache, paged pool, S0 ;

SyStem COde + Size Of Stand by Lnat:‘ljgleg 2422 ?.;f;lical rema (] 81332

. Threads 195 Avallable 31352 @
I ISt Frocezzes a8 File Cache 13316 @

. . . Cormmit Charge] Eernel bMemong [E]
(displayed instead of file cache | [rad™ ™" ssss| zew T e
. . . . i age

which did not include size of Pesk 6| || (ereres JE5
Sta nd by ||St) Frocesses: 38 CPU Usage: 3% tem Usage: GI0IEK 4 27A7F2E

Screen snapshot from: Task Manager | Performance tab

31 AP 9/01

Examining Sizes of

Page Lists

 Must use Kernel Debugger

kd> !memusage
!memusage

loading PFN database.......iiiiiiiiiiieiennnnn.

Zeroed:

Free:

Standby:
Modified:
ModifiedNoWrite:
Active/Valid:
Transition:
Unknown:

TOTAL:

32

0 0 kb)
322 (1288 kb)
1032 (4128 kb)
119 | 476 kb)
0 0 kb)
2623 (10492 kb)
0 0 kb)

0 0 kb)
4096 (16384 kb)

Screen snapshot from: Kernel debugger Imemusage command
AP 9/01

Agenda

Introduction
Process Memory
Free Memory
System Memory

33 AP 9/01

System Memory Usage

« Windows 2000 OS and driver memory usage

breaks down into:
— Nonpageable code
— Pageable code

— File system cache

— Nonpaged pool

— Paged pool

» Let's start with the memory pools

34 AP 9/01

System Memory Pools

« Windows 2000 provides two system memory pools for
the OS and drivers:

— Nonpaged pool (always in physical memory)
— Paged pool (may be paged out)

* Pool sizes are a function of memory size and system
type (Server versus Workstation)

— Can be overidden in Registry:

« HKLM\System\CurrentControlSet\
Control\Session Manager\Executive

— See TechNet articles (search for “nonpaged”)

 http://technet.microsoft.com/cdonline/content/
complete/boes/bo/winntas/technote/planning/
ntdomsiz.htm

35 AP 9/01

System Memory Pools

« Nonpaged pool has initial size and upper max

— Upper limit: 256 MB on x86 (128MB on
Windows NT 4.0)

« 128MB for /3GB systems

— Note: Performance counter displays current size

« Maximum size stored in kernel variable
MmMaximumNonPagedPoollnBytes

» Therefore cannot easily tell when
approaching max

« Paged pool limited by pagefile size
— Upper limit: 192MB on x86, 240MB on Alpha

« System cache can be up to 960MB virtual (512MB in
Windows NT 4.0)

36 AP 9/01

Memory Management Information

“Kernel Memory Paged” =
@ physically resident size of

paged pool

@

pool

37

physical size of nonpaged

Task manager performance tab

E.'Winduws HT Task Manager =1oa] =]
File Options “iew Help

CPU U=age CPU Uzage History

.....-.,.-.Jﬂﬂﬂlﬁnhllulllu'lil-J|\'-,...

“Kernel Memory Nonpaged” =
IR

MEM Uzage Memomy Lzage Hiztary

Totals FPhypzical bMemor [K]

Handles 2422 Total 81332
Threads 135 Lovailable 21352
Frocezzes 28 File Cache 13316
Cormmit Charge [K] Fermel Mermary [K]

Tatal EA09E6 Total 17384
Lirnit 2747F2 Paged 16120
Peak Fra1e Monpaged 12864

Proceszes: 38 CPU Uzage: 3% tem Uzage: BI0IEE. /A 2747 72K

Screen snapshot from: Task Manager | Performance tab

AP 9/01

Monitoring Pool Usage

 Poolmon.exe in in \support\tools on Windows 2000 CD

* Must first turn on “Pool tagging” with GFLAGS
(ResKit) and reboot

« Shows paged and nonpaged pool consumption by data
structure “tag” (no official list - many are self-explanatory)

s Command Prompt - poolmon
Memory @ 130424k Avatl: 63296k PageFlts: (o] InEam kErnl: 2816k P:12208K
Commito: SEFGDOE Limit: 3Z22000K Peak: SF028K Fool N: 2Z4dadk P:1507 2K
Tag Type 2l loc= Frees Oiff Byte= Fer A1loc
Key Paged 33275 (o] 33013 (o] 262 16800 (o] Gel
CMkb Paged 33275 o4 33155 o4 120 23104 o4 19z
ObhSq Paged 31597 a4 31597 a4 o a a4 o
IoMm Paged a9&s [W] anse W] a1z 129934 (W] 142
M Faged FOSO (o)) G519 (o)) 531 9335104 0% 17580
File Maonp 477 o4 3g3z o4 1545 295640 o4 19z
HtF— Paged co3g a4 co11 a4 28 179z ¢ a4 Gl
Gh 5 Paged igF= ¢ a4 3368 O a4 204 264320 ¢ a4 1=a5
Gh 4 Paged I4as a4 3477 a4 21 42585 a4 202
Sect Paged ZEGZE I (o)) 2506 [(o)) ZE6 34048 (o)) 1z8
SeSd Paged 2839 o4 2651 o4 188 33535 o4 178
wad MNonp 2e60 a4 1629 a4 1031 G5O8d a4 Gl
Mm-a MNonp 2517 ¢ a4 1515 ¢ Gj 1002 ag1el a4 as
MNets Moan 2305 | 29192 113 14520 | 131

« ? Displays help, p toggles between nonpaged, paged pool, or both

« b Sorts by total # of bytes
38 AP 9/01

Driver Verifier

« Additional driver integrity checking features in
Windows 2000

Pool integrity checking (special pool)
Unmap pageable memory at high IRQL
Simulating low resource conditions

API verification

Memory leak detection

I/O packet memory verification

« GUI utility to enable (verifier.exe)
* For more info:

39

http://www.microsoft.com/hwdev/driver/driververify.htm

AP 9/01

40

Verifier.exe

= Driver Verifier Manager

DriverStatusI Global Eu:uuntersl Pool Tracking Modify Settings I

—&ctive Drivers [n The System

Driver Verifier

apmbatt. sy
atapi.zps
audztub.zys
BATTLC.5%S
Beep.5YS
Cdfz. 55
cdrom.sys
cemabnd. sy
chipsmb.syz
|

Yerfy Dizabled
Yerify Dizabled
Yerify Dizabled
Yerify Dizabled
Yerfy Dizabled
Yerify Dizabled
Yerify Dizabled
Werify Disabled
Yerfy Dizabled

" Werifp &)l Drivers % Wernify Selected Drivers
Dirivers | Status -
afd.syz Yerify Dizabled

Werify |

Dian't Yerify |

x|

—“erfication Type

¥ Special Pool

¥ Force IROL Checking
¥ Allocation Fault Injection
¥ Pool Tracking

— &dditional Drivers To Verify After Mext B oot

Ereferred Settings |
Bezet All |
Apply |

E xit |

AP 9/01

41

Special Pool

One of the many features in the Driver Verifier is
available on Window NT 4.0 SP4

Helps catch driver and OS memory corruptions
— Puts read only page before and after each allocation
— Each allocation goes in its own page

— Front of a page (underrun checking)/end of page
(overrun checking)

To enable on NT4, add special registry keys under:
HKEY_ LOCAL MACHINE\CurrentControlSet\Control
\Session Manager\Memory Management

To enable on Windows 2000, use Verifier.exe
See article Q192486 for details

AP 9/01

ees

Nonpageable System Code

Most drivers + parts of
NTOSKRNL.EXE
are nonpaged

No performance counter to
get total size

To get size of nonpageable system
code, run \ntreskit\pstat.exe and
add columns 1 and 2

non-paged code

non-paged data

pageable code+data

— output of “drivers” (\ntreskit\drivers.exe)

is similar
— Win32K.Sys is paged, even though it

shows up as nonpaged - must subtract
from list

42

ﬂCummand Prompt

ntoskrnl.
hal.
Pcmcia.
atapi
SCSIPORT.
Spartromw,
ams1nt.
Atdisk.
0isk.
CLASSS.
Mtfs.
TAPE.
Cdrom.

ntdll.

D:vAspstat
Pstat wersion 0.3:

ModuleName

431236

ExE
d11
Y5

.SYS

o
SYS
Y5
Y5
SYS
o
SYS
N
SY5

CANONEOD . DLL

dl1

Load Addr

2O100000
20010000
20001000
2000000
80143000
201db000
201e0000
201e4000
801eb000
2801000
20113000
287000
2710000

td7as000
Frfe00o0

MMy <

81332 kb

uptime: 0

@ ® ©

Cade

264192
20320
15648
14720

214
15168
9ghe
12384
2363
BIl2
Br392
Fars
12608

0
233472

2473400

Cata

39438
2752
B2
32
32
96

o

ad

o

o
5378

267072

Paged

Q344
O Fri
O wed
14368
O wed
O Wed
o Tue
rrdd
1504

4182
3072

142016 1663340

AP 9/01

43

System Working Set

Just as processes have working sets, pageable system code and
data lives in a working set

Pageable components:
— Paged pool
— Pageable code and data in the exec

— Pageable code and data in kernel-mode drivers, Win32K.Sys, graphics drivers,
etc.

— Global file system data cache
To get physical (resident) size of these with PerfMon, look at:
— Memory | Pool Paged Resident Bytes
— Memory | System Code Resident Bytes
— Memory | System Driver Resident Bytes
— Memory | System Cache Resident Bytes

NOTE: Memory | Cache bytes counter is really total of these four
“resident” (physical) counters

AP 9/01

