
AP 9/011

Unit 3: Processes and Threads

3.5. Windows 2000 Thread Scheduling

AP 9/012

Windows 2000 Thread Scheduling

• Priority-driven, preemptive scheduling system

• Highest-priority runnable thread always runs

• Restricted by processor affinity

• Thread runs for time amount of quantum

• No single scheduler – event-based scheduling code
spread across the kernel

Dispatcher routines triggered by the following events:
– Thread becomes ready for execution

– Thread leaves running state (quantum expires, wait state)

– Thread‘s priority changes (system call/NT activity)

– Processor affinity of a running thread changes

AP 9/013

Single Processor Scheduling

• Scheduling on a per-thread basis

AP 9/014

Single-Processor Scheduling
queuing diagram

AP 9/015

Windows 2000 priority levels

• 16-32: static priorities
(real-time)

• 1-15: variable priorities

• 0: MemManager: zero-
page thread

• 0: Idle: „lower than 0“, no
thread no

• Idle Threads: one per
CPU (in proc with PID 0)

Real-time
levels

31

16

Variable
levels

System level

1

15

0

Real-time
levels

AP 9/016

Win32 vs. NT Kernel Priorities
(thread base priorities)

Win32 priority classes

11116Idle

261122Lowest

371223Below normal

481324Normal

591425Above normal

6101526Highest

15151531Time critical

IdleNormalHighReal-time

Win32
thread

priorities

AP 9/017

Win32 priorities

• Thread priority is based on combination of process
priority class and relative thread priority

• Row „normal“ is base priority for the priority classes

• Base priority can be changed (SetProcessPriority())
– Default base priority is „normal“ (24, 13, 8, 4)

– NT system proc. have higher base prio. than default for normal class
(session manager, service controller, local authentication server)

• Thread priority is adjusted by NT (variable levels)

• Real-time priorities are never adjusted

AP 9/018

Scheduling rules (1)

• Preemptive, priority driven
– FIFO ready queues per priority level

– A ready thread either runs or is inserted at end of queue

– ...a preempted thread is inserted at head of queue

• Time-sliced round-robin per priority level
– Threads have base priority & varying current priority

– Process has only base priority (starting prio for threads in this process)

• On multiprocessor systems:
– Tries to keep thread on same CPU

– Lowest priority thread is preempted

– Any processor can interrupt another processor to schedule a thread

AP 9/019

Scheduling rules (2)

• Voluntary switch:
– Enters wait state
– SwitchToThread (NtYield)
– Explicit priority decrease

(SetThreadPriority – NtSetInformationThread)
– Action: the next_ready thread is run, previous goes to right/state list

• Preemption: (fixed prio vs. variable prio)
– A higher priority thread becomes ready
– Action: lowest priority thread is preempted (goes to head of queue)
– Preemption is immediate (fixed prio) or at quantum end (variable prio)

(Win 2000)

• Quantum end:
– Next_ready thread is run, previous has prio decrease by 1

(no lower than base priority)

AP 9/0110

Scheduling rules (3)

• Quantum duration:
– Workstation (Professional): 2 clock ticks
– Server: 12 clock ticks
– Clock tick: 10 ms (7.5-15 ms)

• Quantum stretching (favouring foreground applications)
– Longer quantum: 2, 4, 6 clock ticks
– HKLM\CCS\Control\PriorityControl\W32PrioritySeparation=0,1,2

• Priority boosting (keep the I/O system busy)
– After a wait (e.g. I/O) is satisfied a priority boost is given (not over 15)
– Default boost values:

• 1 for disk, CD-ROM, parallel, video, semaphore
• 2 for serial, network, named pipe, mailslot
• 6 for keyboard or mouse

– Amount can be specified by driver or executive

AP 9/0111

CPU Starvation Avoidance

• Balance Manager runs every second and:
– Scan ready_queues for threads that were ready for 4 sec or more

– Attempts to avoid „priority inversion deadlock“:
• Thread A waits at priority 14 for resource owned by

• Thread B which is ready at priority 4 and has no chance to run (load)

• Actions (since NT 4):
– Thread B is boosted at priority 15 for a double quantum

– After quantum ends, priority decreases to initial value (4)

• Preventing overhead:
– Not more than 16 read_threads per queue per second

– Not more than 10 priority boots per second

AP 9/0112

Win32 Scheduling APIs

Wait until I/O completion, or APC, or time interval endsSleepEx

Puts thread in wait state for n msec (0: give up quantum)Sleep

Yields execution for one quantum to another ready
thread

SwitchToThread

Returns/sets default priority boost control stateGet/SetProcessPriorityBoost

Establishes preferred processor (not restricting to that p.)SetThreadIdealProcessor

Returns or sets ability for NT to boost priority of a threadGet/SetThreadPriorityBoost

Sets a thread‘s affinity mask (subset of process‘s affinity
mask) for a particular set of processors

SetThreadAffinityMask

Returns or sets a process‘s affinity maskGet/SetProcessAffinityMask

Returns or sets a thread‘s priority (relative to its process
base priority

Get/SetThreadPriority

Returns or sets a process‘s priority class (base prio)Get/SetPriorityClass

Suspends or resumes a paused thread from executionSuspend/ResumeThread

AP 9/0113

Relevant Tools

• View (and change) process base priority with:
– TaskManager, Pview, Pviewer

• View numeric process base priority with:
– PerfMon, pstat

• View thread priorities with
– PerfMon, Pview, Pviewer, Pstat

• No general utility to change relative thread priority
levels

• Need increase scheduling priority privilege
– Important NT kernel threads run in real-time priority class
– Be careful with threads spending excessive time in RT prio range

AP 9/0114

View thread
state changes
with perf mon

AP 9/0115

Interrupt levels vs. Priority levels

• All threads run at IRQL 0 or 1
• Threads normally run at IRQL 0
• Only kernel mode APCs

(asynch. proc. calls) run at
IRQL 1

• No thread ever blocks
hardware interrupts

• Thread scheduling at IRQL 2
(dispatching)

• Spinlock synchronizes access
to scheduling data on MP
system (KiDispatcherLock)

High
Power fail

Interprocessor interrupt
Clock

Device n
.
.
.

Device 1
Dispatch/DPC

APC
Passive_Level

High
Power fail

Interprocessor interrupt
Clock

Device n
.
.
.

Device 1
Dispatch/DPC

APC
Passive_Level

High
Power fail

Interprocessor interrupt
Clock

Device n
.
.
.

Device 1
Dispatch/DPC

APC
Passive_Level

IRQLs
31

2
1
0

HW
int

SW
int

AP 9/0116

Interrupts on MP system

Different routines of a driver may execute in parallel
(ISR, DPC, Dispatch Function)

IRQL:
DPC

CPU

IRQL:
ISR

CPU

IRQL:
App

CPU

Interrupt controller

Device
interrupt

HW can route
interrupt to
processor with
lowest IRQL

AP 9/0117

Thread waits
on an object

handle

Thread States

Create and initialize thread object

Initialized

Ready

Transition

Waiting

Running

Terminated

Standby

Reinitialize
Place in

ready queue

Preempt
Select for
execution

Wait is complete

Kernel stack
outswapped

Preempt (or time
quantum ends)

Context-switch to it and start
its execution (dispatching)

Wait is
complete

Execution
completes

AP 9/0118

Thread states (contd.)

• Ready: waiting for execution

• Standby: selected to run next on particular CPU
(only one per CPU)

• Running: executed until kernel preempts thread to run
higher prio thread, quantum ends, termination, wait

• Waiting: synchronization, I/O, suspended by
environment subsystem

(depending on priority, thread may move to ready state after wait)

• Transition: ready for exec. but kernel stack paged out

• Terminated: execution finished,
(thread object may be re-used)

AP 9/0119

Quantum

Amount of time a thread gets to run before NT checks for other threads

• How long is a quantum? How does NT compute it?

• Each thread runs for QU (quantum units: integer val)
– Threads start with QU = 6 on NT WS, QU = 36 on NT S

– NT S should be able to answer every request in one quantum

• Each clock-int reduces QU by 3; QU == 0: dispatching
– Length of clock interval depends on HW (HAL)

• NT WS: Quantum may be increased for foreground app

• QU is doubled when NT boosts thread priority
– Avoid priority inversion / starvation

• QU is adjusted when thread comes out of wait state
– QU = initial for real-time threads

– QU := QU-1 for variable prio threads

– QU == 0: reset QU to process default value; adjust priority (decrease boosted)

AP 9/0120

Default Quantum for
Different Architectures

93.6 ms15.6 ms7.8125 msDEC Alpha AXP

180 ms30 ms15 msOther Multiproc.
Intel systems

120 ms20 ms10 msSome Multi-
processor 486

180 ms30 ms15 msTypical uniproc.
Pentium/PPro

120 ms20 ms10 msTypical
Uniprocessor 486

Default Quantum
on NT S

Default Quantum
on NT WSClock IntervalProcessor

Typical UNIX system: 10 ms

AP 9/0121

Scheduling Data Structures

Process

thread thread

Process

thread thread

Default base prio
Default proc affinity
Default quantum

31

0

Ready summary Idle summary
31 0 31 0

Base priority
Current priority
Processor affinity
Quantum

Bitmask for non-empty
ready queues
Bitmask for idle CPUs

AP 9/0122

Scheduling System Variables

[0] – default QU = 6, [1] – NT WS: QU
= 12, [2] – NT WS: QU = 18

Array of
schar

PspForeground-
Quantum

List heads for the 32 ready queuesArray of 32
list entreis

KiDispatcherReady-
ListHead

Bitmask of priority levels that have
one ore more ready threads

Bitmask
(32 bits)

KiReadySummary

Bitmask of idle processorsBitmask
(32 bits)

KiIdleSummery

Bitmask of active processorsBitmask
(32 bits)

KeActiveProcessors

Number of active processorsByteKeNumberProcessors

Dispatcher spinlockSpinlockKiDispatcherLock

DescriptionTypeVariable

AP 9/0123

Scheduling Scenarios –
voluntary switch

Thread gives up CPU (wait for event, mutex, semaphore,
I/O completion port, process, thread, window message

• Priority of relinquishing thread is not reduced

• Quantum value is decremented by 1 (when wait satisfied)

ReadyRunning
20

19

18

17

16

15

14

To wait state

AP 9/0124

Scheduling Scenarios –
preemption

• A higher-priority thread‘s wait completes

• A thread priority is increased or decreased

• Preempted thread is put at head of ready queue

ReadyRunning
20

19

18

17

16

15

14

From wait state

No priority boost for threads in real-time range

AP 9/0125

Scheduling Scenarios –
Quantum end

Running thread exhausts CPU quantum:

• Should the thread‘s priority be decremented?

• Should another thread be run on the processor?

ReadyRunning

15

14

13

12

11

AP 9/0126

Context Switching

Thread‘s context and context switching are arch-specific
• Context switch requires saving/loading of these data:

– Program counter
– Processor status register
– Other register contents
– User and kernel stack pointers
– Pointer to address space in which thread runs (page table directory)

• Kernel saves kernels stack pointer in KTHREAD block
and loads new thread‘s kernel stack address

• Loads new thread‘s context& page tab.dir.; flushes TLB
• Pending kernel APCs are delivered (IRQL 1)
• Control passes to new thread‘s PC; execution resumes

Kernel saves this info
by pushing it on kernel stack

AP 9/0127

Idle Thread

• NT dispatches idle thread when no runnable thread
exists on a CPU

• Idle thread has no priority (reported as 0); runs at IRQL 2

• Control flow of idle thread:
– Enable/disable interrupts (allow pending ints to be delivered)

– Checks, whether DPCs are pending

– Checks, whether thread has been selected to run next on CPU;
if so: dispatches that thread

– Calls HAL idle routine (to perform power management)

• Varying names: System Idle Process (TaskManager), Idle
(Pview/Pviewer), Idle Process (Pstat), System Process (Tlist/Qslice)

AP 9/0128

Adjusting Thread Scheduling

• Quantum stretching for threads in foreground process
– New to Windows NT 4.0

– Before: increase base priority for foreground threads;
problem: starvation of background processes

• Boosting priority upon wait completion
– Suggested values in \ddk\include\ntddk.h

– Event: 1, Disk/CD: 1, Network: 2, Keyboard/Mouse: 6, Sound: 8

– Priority drops slowly, one level per quantum

• Boosting priority for threads entering a wait state
– CSRSS boosts GUI thread waiting for windows message to 14

– Priority drops immediately; thread runs for double quantum at high prio

• Boosting priority for threads not getting CPU time

AP 9/0129

Priority boosting and decay

Quantum

Base priority

Priority decay at quantum end

Base priority

preempt
(before quantum end)

Boost
upon wait
complete

Round-robin at
base priority

Run Wait Run Run

Time

Priority

• Boosted thread can still be preempted by another thread
• Threads will never be boosted into real-time priority range

AP 9/0130

Watching Priority boosts
for CPU Starvation

AP 9/0131

Boosted thread can still be preempted

AP 05/01

AP 9/0132

Priority boosts for CPU starvation –
priority inversion

Lower priority thread blocks high priority thread
• Balance set manager scans ready queue for threads

that have not run for longer than 300 clock ticks (1/sec)
• Boosts prio to 15; double quantum; no more than 16

threads checked; no more than 10 threads boosted

Wait for
semaphore

Thread holds
semaphore

Thread becomes ready

Priority

Time

11

7

4

Predictability ?

AP 9/0133

Scheduling on MP system

• NT attempts to schedule highest priority thread on all
available CPUs

• Affinity (SetProcessAffinityMask/SetThreadAffinityMask)

• Ideal processor/next processor
– Stored in kernel thread block

– Ideal processor is choosen randomly; not changed by NT

• Selecting a new thread for a CPU:
– Ran last on specified processor

– Has ideal processor set to specified processor

– Has been waiting for longer than 2 quantums

– Has priority greater than or equal to 24

• Threads are not moved in order to free up CPU

