
AP 9/011

Unit 3: Processes and Threads

3.1. Windows 2000 Process and System Activity

AP 9/012

Windows 2000 Process
and System Activity

Agenda:

• Understanding Process and
Thread Activity

• Understanding CPU Time Accounting

• Understanding System Processes

• Process and System Crashes

AP 9/013

SystemwideSystemwide
Address SpaceAddress Space

Per-processPer-process
address spaceaddress space

ThreadThread

ThreadThread

ThreadThread

Processes and Threads

• What is a process?
– Represents an instance of a running program
– Each process has a private memory address

space

• What is a thread?
– An execution context within a process
– All threads in a process share the same per-

process address space

• Every process starts with
one thread
– Running the program’s “main” function
– Can create other threads in the

same process
– Can create additional processes

AP 9/014

Windows 2000 Job Object

• New kernel object to define a group of
related processes
– CreateJobObject()/OpenJobObject()

• Can specify job-wide attributes, quotas,
and security limitations
– Quotas: Total and current CPU time, total and active processes, per-

process and per-job CPU time, min and max working set

– Attributes: CPU affinity, priority class,
scheduling class

– Security limits: No administrators token, only restricted token, only
specific token, filter token,
no accessing windows outside the job, no reading/writing the clipboard

AP 9/015

Process Information Tools

• Tools in Windows 2000:
– Task Manager, Performance Monitor (perfmon.exe)
– In \support\debug\<arch>: pstat, pmon, apimon (also in ResKit)

• Tools in Resource Kit:
– \reskit\qslice.exe - can show process-relative thread activity (GUI)
– \reskit\pviewer - process and thread details (GUI)
– \reskit\pview - processes and threads and security details (GUI)
– \reskit\tlist - shows process tree and thread details (character cell)
– \reskit\pulist - lists processes and usernames (character cell)
– \reskit\pstat - process/threads and driver addresses (character cell)
– \reskit\pmon - process list (character cell)
– \reskit\apimon.exe - system call and page fault monitoring (GUI)

• Tools from www.sysinternals.com
– ntpmon - shows process/thread create/deletes (and context

switches on MP systems only)
– Handle - displays open handles and loaded DLLs

Many overlapping tools!
Several show one unique

item that no other tool
shows

AP 9/016

Task Manager

• Processes tab: List of processes
• Can configure with View->

Select columns
• Click on column heading to sort

by that column
• Right-click on a process name to change

priority, end process tree (new in Windows
2000), or (on MP) CPU assignments

• Performance tab: Subset of Windows NT
performance counters

• To start: Ctrl+Shift+Esc; or Ctrl+Alt+Del; or right
click
on empty area of task bar

• Overlaps with other process display utilities
– Except Win16 process info, only visible here (On Processes

tab, click on Options->Show 16-bit tasks)

• Applications tab: List of top level visible windows
– Windows are owned by threads (right-click on a window

and select “go to process”)

AP 9/017

Process Viewer

• Pviewer.exe in
Resource Kit,
pview.exe in
Platform SDK

• Shows start address
of each thread
– Needed to analyze

system threads

• Can display remote
process list
– But cannot kill remote

processes
• Use rkill in ResKit!

Screen snapshot from:Screen snapshot from:
Programs | Resource Kit |Programs | Resource Kit |
 Diagnostics | Process Viewer Diagnostics | Process Viewer

AP 9/018

Looking at the Process Hierarchy
with TLIST -T

• Understanding the parent of a
process helps identify what it is
and where it came from

• tlist -t shows the tree
– If parent not alive, left justifies

process
• I.e., cannot see creator

if it is gone

– For example, explorer.exe’s
parent is dead (it is actually
started by userinit.exe, which then
exits)

• Windows 2000
– Perfmon can show

parent process id
– Task Manager has a

“kill process tree”

AP 9/019

Looking at open Handles

• Handle leaks can show up as system memory leaks!

• Task Manager can show total # handles by process

• Resource Kit “oh” tool (first time run will set an Windows 2000
Global Flag - see gflags.exe in ResKit; reboot required)

• handleex (GUI) or nthandle (console) from www.sysinternals.com

AP 9/0110

DLL Usage
Static references

• Depends.exe in
Resource Kit

• Displays static
linkage from
EXE to DLLs

AP 9/0111

DLL Usage
Actual files

• To diagnose DLL conflicts, you need to know which
DLLs were loaded and from where

• tlist <processname> or tlist <processid> lists the DLLs,
but not the path

• listdlls from www.sysinternals.com lists full path

AP 9/0112

Agenda

• Understanding Process and Thread Activity

• Understanding CPU Time Accounting

• Understanding System Processes

• Process and System Crashes

AP 9/0113

Kernel Mode Versus
User Mode

• A processor state
– Controls access to memory
– Each memory page is tagged

to show the required mode for
reading and for writing

• Protects the system from
the users

• Protects the user (process) from
themselves

• System is not protected
from system

– Code regions are tagged
“no write in any mode”

– Controls ability to execute
privileged instructions

– A Windows NT abstraction
• Intel: Ring 0, Ring 3

• Associated with threads
– Threads can change from user to

kernel
and back

– Part of saved context, along with
registers, etc.

– Does not affect scheduling

• PerfMon counters:
– “Privileged Time” and

“User Time”

– 4 levels of granularity: thread,
process,
processor, system

AP 9/0114

Getting Into Kernel Mode

Code is run in kernel mode for one of three reasons:
1. Requests from user mode

– Via the system service dispatch mechanism
– Kernel-mode code runs in the context of the requesting thread

2. Interrupts from external devices
– Windows 2000 interrupt dispatcher invokes the interrupt service routine
– ISR runs in the context of the interrupted thread

(so-called “arbitrary thread context”)
– ISR often requests the execution of a “DPC routine,”

which also runs in kernel mode
– Time not charged to interrupted thread

3. Dedicated kernel-mode system threads
– Some threads in the system stay in kernel mode at all times

(mostly in the “System” process)
– Scheduled, preempted, etc., like any other threads

AP 9/0115

Interrupt dispatch routine

Disable interrupts

Record machine state (trap
frame) to allow resume

Mask equal- and lower-IRQL
interrupts

Find and call appropriate
ISR

Dismiss interrupt

Restore machine state
(including mode and
enabled interrupts)

Tell the device to stop
interrupting

Interrogate device state,
start next operation on
device, etc.

Request a DPC

Return to caller

Interrupt service routine

interrupt !

user or
kernel mode

code

kernel mode Note, no thread or
process context
switch!

Interrupt Dispatching

AP 9/0116 LowLow
APCAPC

Dispatch/DPCDispatch/DPC
Device 1Device 1

..

..

..
Device nDevice n

ClockClock
InterprocessorInterprocessor Interrupt Interrupt

Power failPower fail
HighHigh

normal thread execution

Hardware interrupts

Deferrable software interrupts

00
11
22

3030
2929
2828

3131

Interrupt Precedence
via IRQLs

• IRQL =
Interrupt Request Level
– The “precedence” of the interrupt

with respect to other interrupts
– Different interrupt sources have

different IRQLs
– Not the same as IRQ

• IRQL is also a state of
the processor

• Servicing an interrupt raises
processor IRQL to that
interrupt’s IRQL
– This masks subsequent interrupts

at equal and lower IRQLs

• User mode is limited to IRQL 0

AP 9/0117

queue head DPC object DPC object DPC object

XydriverDpcRtnXydriverDpcRtn((DpcObjDpcObj,,
DfrdCtxDfrdCtx,SysArg1,SysArg2),SysArg1,SysArg2)
{{
 // ... // ...
}}

DfrdCtxDfrdCtx
SysArg1SysArg1
SysArg2SysArg2

 Deferred Procedure Calls
(DPCs)

• A list of “work requests”
– One queue per processor (but processors can run each others’ DPCs)

– Implicitly ordered by time of request (FIFO)

• Used to defer processing from higher (device) interrupt level
to a lower (dispatch) level
– Used heavily for driver “after interrupt” functions

– Used for quantum end and timer expiration

AP 9/0118

Screen snapshot from: Programs | Screen snapshot from: Programs |
Administrative Tools | Performance MonitorAdministrative Tools | Performance Monitor
click on click on ““++”” button, or select Edit | Add to chart button, or select Edit | Add to chart……

Accounting for Kernel-Mode Time

“Processor Time” =
total busy time of processor
(equal to elapsed real time - idle
time)

“Processor Time” =
“User Time” + “Privileged Time”

“Privileged Time” =
time spent in kernel mode

“Privileged Time” includes:
– Interrupt Time
– DPC Time

Again note:
Interrupts and DPCs are not
charged to any process or thread

AP 9/0119

Agenda

• Understanding Process and Thread Activity

• Understanding CPU Time Accounting

• Understanding System Processes

• Process and System Crashes

AP 9/0120

System Process Tree

Note: These two processes have different names in different utilities
(they are not running a real .EXE)

Process id 2 (8 in Win2000)
Part of the loaded system image
Home for kernel-defined threads
 (not a real process)
Thread 0 (routine name Phase1Initialization)
 launches the first “real” process, smss.exe
 (and then becomes the zero page thread)

(System)

Process id 0
Part of the loaded system image
Home for idle thread(s)
 (not a real process nor real threads)

(Idle)

AP 9/0121

System Threads

• Subroutines in OS and some drivers that need to run as
real threads
– E.g., need to run concurrently with other system activity, wait on timers,

perform background “housekeeping” work

– For details, see DDK documentation on PsCreateSystemThread()

• What process do they appear in?
– Windows NT 4.0: The “System” process (PID 2)

– Windows 2000: windowing system threads appear in “csrss.exe”
(Win32 subsystem process) - rest in “System” (PID 8)

AP 9/0122

Examples Of System Threads

• Core operating system (NTOSKRNL.EXE)
– Modified Page Writer

– Balance Set Manager

– Swapper (kernel stack, working sets)

– Cache manager lazy writer

– Zero page thread (thread 0, priority 0)

– General pool of worker threads (ExQueueWorkItem())

• File server (SRV.SYS)

• Floppy driver (FLOPPY.SYS)

AP 9/0123

Identifying System Threads

• To really understand what’s going on, must find which
driver a thread “belongs to”:

1. Use PerfMon to monitor individual thread activity

2. Get relative thread # and look up “Start address”
(address of thread function)
in Pviewer

3. Run \ntreskit\pstat to find which driver thread is in
(look for what driver starts near the thread start address –
may have to compute ending address of driver)

AP 9/0124

Identifying System Threads (contd.)

• If thread is in NTOSKRNL.EXE, must find name of
subroutine:

1. Dump NTOSKRNL.DBG (or NTKRNLMP.DBG) with Kernel Debugger
by opening any crash dump file and
typing “x *”

- note: Values vary for each service pack

2. Look up address

• For details, see Chapter 2 of D.Solomon „Inside Windows NT“,
MS Press, 1998.
– Available as the free sample chapter on mspress.microsoft.com

AP 9/0125

Routine Name Priority Notes

Phase1Initialization 0 First thread in life of system; becomes zero
page thread

ExpWorkerThread 9-16 Pool of worker threads

MiDereferenceSegmentThread 18 Dereferences segments; also expands
paging file

MiModifiedPageWriter 17 Writes modifed pages to paging file

KeBalanceSetManager 16 Reclaims memory from processes, with aid
of . . .

KeSwapProcessOrStack 23 Scheduled by balance set manager

FsRtlWorkerThread 16, 17 Dedicated worker threads for FSDs

SepRmCommandServerThread 15 Security Reference Monitor Command
Server

MiMappedPageWriter 17 Writes modified pages to mapped files

Threads in NTOSKRNL.EXE

Observed on Intel Windows NT® Workstation 4.0

AP 9/0126

System Process Tree

smss.exe Session Manager
The first “created” process
Takes parameters from \Registry\Machine\System\CurrentControlSet\Control\
Session Manager
Launches required subsystems (csrss) and then winlogon

csrss.exe Win32 subsystem

winlogon.exe Logon process: Launches services.exe, lsass.exe, and nddeagnt.exe; presents
first login prompt;
presents “enter username and password” dialog
When someone logs in, launches userinit.exe

services.exe Service Controller; also, home for many Windows NT-
supplied services
Starts processes for services not part of services.exe (driven by
\Registry\Machine\System\
CurrentControlSet\Services)

lsass.exe Local Security Authentication Server

userinit.exe Started after logon; starts desktop (Explorer.Exe) and exits (hence does not
show up in tlist output; Explorer appears to be an orphan)

explorer.exe and its children are the creators of all interactive apps

AP 9/0127

Win32 Subsystem Process
(csrss.exe)

• Contains user-mode part of
windowing system
– Majority is in WIN32K.SYS (kernel-mode driver)

• Rarely invoked - only at:
– Process creation and deletion

– Thread creation and deletion

– Get temporary file name

– Drive letters

– Security checks for file system redirector

– Window management for console
(character cell) applications

– Some support for 16-bit DOS support (NTVDM.EXE)

AP 9/0128

ServiceService
ControllerController

• Install time
– Setup application tells Service Controller

about the service

System boot / initialization
– SCM reads registry, starts

services as directed

• Management / maintenance
– Control panel can start and stop services

and change startup parameters

SetupSetup
ApplicationApplication

CreateService
RegistryRegistry

ServiceService
ProcessesProcessesControlControl

PanelPanel

Service Processes

AP 9/0129

Mapping Service Processes
to Service Names

• Not always a 1 to 1 mapping
– Some service processes contain more than one service
– E.g., Event Log service is in lsass.exe,

Workstation and Server are in services.exe

• Look up .EXE name or service name in registry:
– HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services
– One key per installed service

• Mandatory information kept on each service:
– Type of service (Win32, Driver…)
– Imagename of service .EXE
– Start type (automatic, manual, or disabled)

• Optional information:
– Display Name, Dependencies, Account and password to run under

AP 9/0130

Agenda

• Understanding Process and Thread Activity

• Understanding CPU Time Accounting

• Understanding System Processes

• Process and System Crashes

AP 9/0131

Process Crashes

• Registry defines behavior for
unhandled exceptions
– HKLM\Software\Microsoft

\Windows NT\CurrentVersion
\AeDebug

– Debugger=filespec of debugger to run
on app crash

– Auto 1=run debugger immediately
0=ask user first

• Default on retail
Windows 2000 system
is Auto=1;
Debugger=DRWTSN32.EXE

• Default with VC++ is
Auto=0, Debugger=MSDEV.EXE

AP 9/0132

Dr. Watson

• Default is to
run this automatically

• Can customize by
running
DRWTSN32.EXE

• Look for its log files
(“drwtsn32.log”)

AP 9/0133

Why does Windows 2000 crash

• Unhandled exception in device driver or kernel function
– Memory access violation, etc.

• Call to a kernel routine results in reschedule
when interrupt request level (IRQL) is DPC/dispatch or higher

• Page fault on memory backed by paging file
when IRQL is DPC/dispatch or higher
– Memory manager would have to wait for I/O operation

– Waits cannot occur at DPC/dispatch IRQL level or higher (would
require re-schedule)

• Device driver or OS function crashes system
– Via call to KeBugCheck() – reaction on corruption of system integrity

• Hardware error occurs (NMI, machine check)

AP 9/0134

System Crashes

• Few outside of Microsoft perform true Windows 2000
crash dump analysis

• Often the victim is on the stack, not the culprit
– See article on blue screen on www.sysinternals.com

• But simply looking up crash code
(bugcheck code) may be enough
1. Look up explanation in Windows 2000 messages help file

(\ntreskit\NTMSGS.HLP)
• Click on “Kernel”, then “STOP”

2. Do a search in TechNet for hex stop code

AP 9/0135

Crash Debugging Tools

• Kernel Debuggers
– (I386KD.EXE, WinDBG.EXE, KD.EXE)

– Available with platform SDK and Windows 2000 DDK

• Open a crash dump for interactive analysis
• Also can examine a live Windows 2000 system, but requires 2 computers

– dumpchk: Checks validity of dump file

– Available in \support\tools of Windows 2000 CD-ROM

• Limited documentation available:
– See Resource Kit/Windows NT Workstation Resource Guide

(“Windows NT Debugger” chapter) for limited documentation

AP 9/0136

Windows 2000
Kernel Debugger

• To open a dump, minimally need one symbol table file:
– NTOSKRNL.DBG (or NTKRNLMP.DBG if a MP system)

Must match rev of Windows 2000 (service pack level)

• Two modes of operation:
– Open a crash dump file:

e:\> set _NT_SYMBOL_PATH=e:\support\debug\i386\symbols
e:\> i386kd -Z dumpfilename

– Connect to a live system via null modem cable
• mMust boot target system with /DEBUG

– C:\> set _NT_SYMBOL_PATH= e:\i386\symbols
C:\> set _NT_DEBUG_PORT=COMn default COM1
C:\> set _NT_DEBUG_BAUD_RATE=nnnnn default 19200
C:\ntcdrom:\support\debug\i386 > i386kd

serial “null modem” cable
(for debugger)

host target

AP 9/0137

Debug Boot Options

• /DEBUG - useful to break into a “hung” system
– Kernel debugger loads at boot time and attempts to connect

• If no host, boot continues

– Pro: Can “break in” to target system (run debugger on host and type Cntrl/C)
– Cons:

• Takes away a COM port for life of system
• Windows NT checks to see if host debugger wants to connect each clock tick

(negligible impact)
• System crash: Debugger waits to connect to host, then writes crash dump file
• Debug output from any driver will cause debugger to activate (hangs system if no

host connected)

• /CRASHDEBUG - useful to look at a crash on a system that cannot
take a crash dump
– Kernel debugger loads only when system crashes

• COM port not taken away while system is up
• No issue with debug output from drivers

– But, cannot “break in” to target if hung

AP 9/0138

Windows 2000 Internals Information
Sources

• MSDN Library
– Platform SDK API documentation
– Windows NT Device Driver Kit (DDK) documentation
– Win32 Knowledge Base - has some Windows NT internals articles

• Past Windows NT/2000 conferences audio/video tapes
(www.mobiletape.com)

• www.sysinternals.com
– Windows 2000 internals articles and tools

• www.microsoft.com/hwdev
– hardware developers and driver writers

• www.microsoft.com/hwdev/ntifskit
– Installable File System Developers Kit

• comp.os.ms-windows.programmer.nt.kernel-mode
– drivers newsgroup

• www.cmkrnl.com - Windows 2000 device driver FAQ

