
AP 9/01

Unit 7: The Input/Output System

7.2. The Windows 2000 I/O System

AP 9/01

The Windows 2000 I/O System

Component of Windows 2000 executive;
resides in NTOSKRNL.EXE

• Accepts I/O requests from user-mode/kernel-mode

• Delivers them to I/O devices

• Filters between user-mode I/O and hardware:
– File system drivers

– Filter drivers

– Low-level device drivers

AP 9/01

Design Goals

• Fast I/O processing on single / multiprocessor systems

• Protection for shareable resources
– Using Windows 2000 security mechanisms

• Meet requirements dictated by different subsystems

• Provide common services for device drivers
– Ease device driver development

– Allow drivers to be written in high-level language

• Dynamic addition/removal of device drivers

• Support multiple file systems (FAT, CDFS, UDF, NTFS)

• Provide mapped file I/O capabilities

AP 9/01

I/O System Components

Applications
Win32

services

WMI
service

User-mode
PnP

manager

Setup
components

WDM WMI
routines

PnP
manager

Power
manager

I/O
manager

...

HAL

I/O System

Drivers

User mode

kernel mode registry

AP 9/01

The Flow of a typical I/O Request

• I/O manager controls
processing of I/O requests

• Kernel-mode device drivers
translate I/O requests
into control requests to
hardware devices

• Driver support routines
are called by device drivers

• HAL routines insulate drivers
from variations in HW platform

I/O subsystem API (Ntxxx)

I/O manager (Ioxxx)

Kernel-mode
device drivers

HAL I/O access routines

I/O ports and registers

Driver support
routines (Io,
Ex, Ke, Mm,
Hal, FsRtl,
and so on)

AP 9/01

I/O Manager

• Framework for delivery of I/O request packets (IRPs)

• IRPs control processing of all I/O operations
(exception: fast I/O does not use IRPs)

• I/O manager:
– creates an IRP for each I/O operation;

– passes IRP to correct drivers;

– deletes IRP when I/O operation is complete

• Driver:
– Receives IRP

– Performs operations specified by IRP

– Passes IRP back to I/O manager or to another driver (via I/O manager)
for further processing

AP 9/01

I/O Manager (contd.)

• Supplies common code for different drivers:
– Drivers become simpler, more compact

• I/O manager:
– Allows driver to call other drivers

– Manages buffers for I/O requests

– Provides time-out support for drivers

– Records which installable file systems are loaded

– Provides flexible I/O services to environment subsystems
(Win32/POSIX asynchronous I/O)

• Layered processing of I/O requests possible:
– Drivers can call each other (via I/O manager)

AP 9/01

I/O Functions

• Advanced features beyond open, close, read, write:

• Asynchronous I/O:
– May improve throughput/performance:

continue program execution while I/O is in progress

– Must specify FILE_FLAG_OVERLAPPED on Win32 CreateFile()

– Programmer is responsible for synchronization of I/O requests

• Internally, all I/O is performed asynchronously
– I/O system returns to caller only if file was opened for asynch. I/O

– For synchronous I/O, wait is done in kernel mode depending on
overlapped flag in file object

• Status of pending I/O can be tested:
– via Win32 function: HasOverlappedIoCompleted()

– when using I/O completion ports: GetQueuedCompletionStatus()

AP 9/01

Control flow for an I/O operation

Call Nt ReadFile()
Dismiss interrupt

Call Invoke driver()
Wait or return

to caller

Initiate I/O operation
Return to caller

Call ReadFile()

Call NtReadFile()
Return to caller

Int 2E
Return to caller

User mode
Kernel mode

Application

KERNEL32.DLL

NTDLL.DLL

NTOSKRNL.EXE

NTOSKRNL.EXE

DRIVER.SYS

ReadFile

NtReadFile

KiSystemService

NtReadFile

Whether to wait depends
on overlapped flag

AP 9/01

Advanced I/O Functions

• Fast I/O
– Bypass generation of IRPs

– Go directly to file system driver or cache manager to complete I/O

• Mapped File I/O and File Caching
– Available through Win32 CreateFileMapping() / MapViewOfFile() func.

– Used by OS for file caching and image activation

– Used by file systems via cache manager to improve performance

• Scatter/Gather I/O
– Win32 functions ReadFileScatter()/WriteFileScatter()

– Read/write multiple buffers with a single system call

– File must be opened for non-cached, asynchronous I/O;
buffers must be page-aligned

AP 9/01

Device Drivers

MS-DOS or Win16 App

Virtual device driver

VDM Win32 application

Win32 API DLL

GDI calls

Windows 2000 executive services

Win32
subsystem
(WIN32K.SYS)

Printer
driverDisplay

driver

GDI (graphics engine)

Spooler

Kernel-mode device
driver (possibly

application-specific)
Kernel-mode device

driver (KDD)
Video

miniport KDD
Parallel

port KDD

ReadFile,
WriteFile,
DeviceIo-
Control,
etc, calls

AP 9/01

Types of Device Drivers
(kernel-mode)

• File system drivers
– Satisfy I/O requests to files by issuing requests to mass storage or

network device drivers

• Windows 2000 drivers
– Drivers for mass storage devices, protocol stacks, network adaptors

– Integrate with Windows 2000 power manager and PnP manager

• Legacy drivers
– Written for Windows NT, run unchanged on Windows 2000

– PnP/power management not supported

• Win32 subsystem display drivers
– Translate device-independent GDI requests into device-specific req.

– Interaction with video miniport driver

AP 9/01

Types of Device Drivers
(kernel-mode) (contd.)

Windows Driver Model (WDM) drivers
Implemented on Windows 2000/98/ME, PnP & power management

• Bus drivers
– Manage a logical or physical bus (PCMCIA, PCI, USB, ISA, FireWire)

– Responsible for device detection and powering the bus

• Function drivers
– Manage a particular type of device (bus drivers use PnP manager to

announce presence of devices to function drivers)

– Export device‘s operational interface to OS

• Filter drivers
– Augment or change behavior of a device or another driver

AP 9/01

Types of Device Drivers
(user-mode)

• Virtual device drivers (VDDs):
– Used to emulate 16-bit MS-DOS applications

– Translate MS-DOS references to I/O ports into native Win32 I/O func.

• Win32 subsystem printer drivers
– Translate device-independent GDI requests into device-specific req.

– Forward commands to kernel-mode drivers

Documentation: Device Driver Kit (DDK)
– Kernel mode drivers are the only type of driver that can directly control

and access hardware devices

AP 9/01

Types of Kernel-mode Drivers
(another categorization)

Support for a device might be split among low-level
hardware device drivers

• Class drivers
– Implement I/O processing for a particular class of devices

(disk, tape, CD-ROM)

• Port drivers
– Implement I/O processing specific to the type of I/O port (SCSI,...)

• Miniport drivers
– Map generic I/O request to a port type into an adapter type

(a specific SCSI adapter,...)

AP 9/01

Driver Structure

Relationships
among various
types of kernel-
mode device
drivers

Windows 2000 I/O system interface

FAT file
system

NTFS
CD-ROM

file system

CD-ROM
class driver

Tape class
 driver

FTDisk
driver

(striping,
mirroring) Disk class

 driver

port
driver Miniport

drivers
Miniport
drivers

AP 9/01

Layering a File System Driver
and a Disk DriverEnvironment

subsystem
or DLL

User mode
Kernel mode

NtWriteFile(file_handle, char_buffer)

System services

I/O
manager

Write data at specified
byte offset within a fileFile system

driver
Translate file-relative byte offset
into disk-relative byte offset, and
call next driver (via I/O manager)

File system
driver

Disk driver Call driver to write data at
disk-relative byte offset

Translate disk-relative byte offset into
physical location, and transfer data

Call next driver
to write data to
Disk 3 at disk-
relative byte offset

Multi-
volume

disk
 driver

Adding a
layered driver

Disk 2 Disk 3Disk 1

AP 9/01

Structure of a Driver

• I/O manager executes initialization routine when loading a driver
• PnP manager calls add-device routine on device detection
• Dispatch routines: open(), close(), read(), write()
• Start I/O routine initiates transfer from/to a device
• ISR runs in response to interrupt; schedules DPC
• DPC routine performs actual work of handling interrupt;

starts next queued I/O operation on device

Start I/O routine

Interrupt service
routine (ISR)

Dispatch routines

Initialization
routine DPC routine

I/O
subsystem

Dispatch routinesDispatch routines

Add-device routine

AP 9/01

Other components of device drivers

• Completion routines
– A layered driver may have completion routines that will notify it when a

lower-level driver finishes processing an IRP
(I/O Request Packet)

• Cancel I/O routine
• Unload routine

– Releases system resources

• System shutdown notification routine
• Error-logging routines

– Notify I/O manager to write record to error log file (e.g., bad disk block)

• Win2000: Windows Driver Model (WDM)
– Plug & Play support
– Source compatible between Win98/ME and Win2000

AP 9/01

Plug and Play (PnP)

• PnP manager recognizes hardware, allocates
resources, loads driver, notifies about config. changes

Not started

Started

Pending stop

Stopped

Pending
remove

Surprise
remove

Removed
Start-device
command

Start-device
command

Query-stop
command

Stop
command

Query-remove
command

Surprise-remove
command

Remove
command

Remove
command

Device Plug and Play state transitions

AP 9/01

Power Manager

• based on the Advanced Configuration and Power Interface (ACPI)

Long and
undefined

System bootTrickle current to
power button

S5 (fully off)

Long and
undefined

System restarts from
hibernate file and resumes
where it left off (returns to S0)

Trickle current to power
button and wake
circuitry

S4 (sleeping)

Same as S2System resumes where it left
off (returns to S0)

Less than S2,
processor is off

S3 (sleeping)

2 or more
sec.

System resumes where it left
off (returns to S0)

Less than S1,
more than S3

S2 (sleeping)

Less than 2
sec.

System resumes where it left
off (returns to S0)

Less than S0,
more than S2

S1 (sleeping)

NoneNot applicableMaximumS0 (fully on)

HW LatencySoftware ResumptionPower ConsumptionState

System Power-State Definitions

AP 9/01

Power Manager Operation

Power-state transitions are
triggered by:
– System activity level

– System battery level

– Shutdown, hibernate, or sleep
requests from application

– User actions, such as pressing
the power button

– Control Panel power settings

S0

S2

S3

S4

S5

S1Power-state
transitions

AP 9/01

Synchronization

Drivers must synchronize accesses to global driver data:

• Execution of a driver can be preempted by higher-prio
threads; quantum may expire; interrupts

• Windows 2000 can run driver code simultaneously on
multiprocessor systems

W2K kernel provides special synchronization routines:

• Raise IRQL on single processor machines

• Use spinlocks on multiprocessors

AP 9/01

Data structures – File objects

• Memory-based representation of physical resource

Identifies which parts of the file are cached by the cache manager
and where they reside in the cache

Pointer to private
cache map

Indicates a root structure that describes a mapped filePointer to section
object pointers

Volume/partition, that the file resides onPointer to volume
parameter block

Type of device on which the file residesPointer to device
object

Synch. vs. asynch, cached vs. non-cached, sequential, randomOpen mode

Exclusive vs. SharedShare mode

Current location in the file (for synchronous I/O)Byte offset

Identifies physical file that the file object refers toFilename

PurposeAttribute

AP 9/01

Driver objects and device objects

• When a thread opens a handle to a file object, the I/O
manager must determine which driver(s) it should call

Driver object:
– Represents individual driver in the system

– Records for I/O manager the address of each of the drivers dispatch
routines (entry points)

Device object:
– Represents physical/logical/virtual device on the system

– Describes characteristics such as buffer alignment, location of device
queue for incoming I/O request packets (IRPs)

AP 9/01

The driver object

Read

Write

...

Device control

Start I/O

Unload

Cancel

Function code 1

Function code 2

...

...

...

...

Function code n

Device
object

Device
object

Device
object

(Disk) (Disk
partition)

(Disk
partition)

AP 9/01

I/O Request Packet

Environment
subsystem or

DLL

Services

I/O manager

IRP header

WRITE
parameters

File
object

Device
object

Driver
object

IRP stack
location

Dispatch
routine(s) Start I/O ISR

DPC
routine

Device Driver

1)An application writes
a file to the printer,
passing a handle to
the file object

2)The I/O manager
creates an IRP and
initializes first stack
location

3)The I/O manager uses
the driver object to locate
the WRITE dispatch
routine and calls it,
passing the IRP

User mode
Kernel mode

AP 9/01

IRP data

IRP consists of two parts:

• Fixed portion (header):
– Type and size of the request

– Whether request is synchronous or asynchronous

– Pointer to buffer for buffered I/O

– State information (changes with progress of the request)

• One or more stack locations:
– Function code

– Function-specific parameters

– Pointer to caller‘s file object

• While active, IRPs are stored in a thread-specific queue
– I/O system may free any outstanding IRPs if thread terminates

AP 9/01

I/O Processing –
synch. I/O to a single-layered driver

1. The I/O request passes through a subsystem DLL

2. The subsystem DLL calls the I/O manager‘s
NtWriteFile() service

3. I/O manager sends the request in form of an IRP to the
driver (a device driver)

4. The driver starts the I/O operation

5. When the device completes the operation and
interrupts the CPU, the device driver services the int.

6. The I/O manager completes the I/O request

AP 9/01

Completing an I/O request

Servicing an interrupt:
– ISR schedules Deferred Procedure Call (DPC); dismisses int.

– DPC routine starts next I/O request and completes interrupt servicing

– May call completion routine of higher-level driver

I/O completion:
– Record the outcome of the operation in an I/O status block

– Return data to the calling thread – by queuing a kernel-mode
Asynchronous Procedure Call (APC)

– APC executes in context of calling thread; copies data; frees IRP;
sets calling thread to signaled state

– I/O is now considered complete; waiting threads are released

AP 9/01

Layered Drivers
Environment
subsystem or

DLL

Services

I/O manager

1)Call I/O service

2)The I/O manager creates an IRP,
initializes first stack location and
calls file system driver

3)File system driver fills in a 2nd

IRP stack location and calls
the disk driver

User mode
Kernel mode

IRP

File system
driver

Disk
driver

IRP

4)Send IRP data to device
(or queue IRP), and return

6)Return I/O pending status

5)Return I/O pending status

7)Return I/O pending status

Optimization: associated IRPs
may work in parallel on a single
I/O request

