Unit 7: The Input/Output System

7.2. The Windows 2000 I/O System

AP 9/01

The Windows 2000 I/O System

Component of Windows 2000 executive;
resides in NTOSKRNL.EXE

* Accepts I/O requests from user-mode/kernel-mode
* Delivers them to I/O devices

* Filters between user-mode |I/O and hardware:
— File system drivers
— Filter drivers
— Low-level device drivers

AP 9/01

Design Goals

Fast |/O processing on single / multiprocessor systems

Protection for shareable resources
— Using Windows 2000 security mechanisms

Meet requirements dictated by different subsystems

Provide common services for device drivers

— Ease device driver development
— Allow drivers to be written in high-level language

Dynamic addition/removal of device drivers
Support multiple file systems (FAT, CDFS, UDF, NTFS)
Provide mapped file I/O capabilities

AP 9/01

/O System Components

-

fA

L Win32
Applications :
services
A ¢ ¢ A |
WMI User-mode Setup
. PnP < >
service components
User mode A Tanaqer
kernel mode et i ______ N — L __________________ N ,
/O System| WDM. WMI PnP Power I/O ‘
| routines manager manager manager |

Drivers <

AP 9/01

The Flow of a typical I/O Request

I/O manager controls

/O subsystem API (Ntxxx)

processing of 1/0O requests

!

Kernel-mode device drivers

I/O manager (loxxx)

fcranslate /O requests Driver support l
iInto control requests to | routines (lo,

: Ex, Ke, Mm, Kernel-mode
hardware devices RN device drivers
Driver support routines | andsoon) v
are called by device drivers HAL l/O access routines
HAL routines insulate drivers l

from variations in HW platform /O ports and registers

AP 9/01

/O Manager

Framework for delivery of I/O request packets (IRPs)

IRPs control processing of all I/O operations
(exception: fast I/0O does not use IRPs)

/O manager:

— creates an IRP for each |/O operation;

— passes IRP to correct drivers;

— deletes IRP when I/O operation is complete

Driver:
— Receives IRP
— Performs operations specified by IRP

— Passes IRP back to I/O manager or to another driver (via /O manager)
for further processing

AP 9/01

/O Manager (contd.)

« Supplies common code for different drivers:

Drivers become simpler, more compact

« 1/O manager:

Allows driver to call other drivers

Manages buffers for I/O requests

Provides time-out support for drivers

Records which installable file systems are loaded

Provides flexible /O services to environment subsystems
(Win32/POSIX asynchronous 1/O)

« Layered processing of /O requests possible:

Drivers can call each other (via I/O manager)

AP 9/01

/O Functions

Advanced features beyond open, close, read, write:

Asynchronous |/O:

— May improve throughput/performance:
continue program execution while 1/O is in progress

— Must specify FILE_ FLAG_OVERLAPPED on Win32 CreateFile()
— Programmer is responsible for synchronization of I/O requests

Internally, all I/O is performed asynchronously

— /O system returns to caller only if file was opened for asynch. /O
— For synchronous I/O, wait is done in kernel mode depending on
overlapped flag in file object
Status of pending I/O can be tested:
— via Win32 function: HasOverlappedloCompleted()

— when using I/O completion ports: GetQueuedCompletionStatus()
AP 9/01

Control flow for an I/O operation

ReadFile

NtReadFile

Call ReadFile()

v

Call NtReadFile()
Return to caller

v

Int 2E
Return to caller

Application

KERNEL32.DLL

NTDLL.DLL

User mode

KiSystemService

NtReadFile

Whether to wait depends
on overlapped flag

\4

Call Nt ReadFile()
Dismiss interrupt

v

Call Invoke driver()
Wait or return
to caller

v

Initiate 1/O operation
Return to caller

A N AN N AN A

Kernel mode

NTOSKRNL.EXE

NTOSKRNL.EXE

DRIVER.SYS

AP 9/01

Advanced I/O Functions

 Fastl1/O
— Bypass generation of IRPs
— Go directly to file system driver or cache manager to complete 1/O

« Mapped File I/O and File Caching
— Auvailable through Win32 CreateFileMapping() / MapViewOfFile() func.
— Used by OS for file caching and image activation
— Used by file systems via cache manager to improve performance

o Scatter/Gather I/O

— Win32 functions ReadFileScatter()/WriteFileScatter()
— Read/write multiple buffers with a single system call

— File must be opened for non-cached, asynchronous 1/O;
buffers must be page-aligned

AP 9/01

Device Drivers

MS-DOS or Win16 App
VDM Win32 application GDl calls
Virtual device driver /
Win32 API DLL
Windows 2000 executive services
Win32 GDI (graphics engine)
ReadFile, subsystem Printer
WriteFile, (WIN32K.SYS) | Display driver
Devicelo- driver Spooler
Control,
etc, calls 4 : l l
Kernel-mode device v
driver (possibly Kernel-mode device Video Parallel
application-specific) driver (KDD) miniport KDD | | port KDD

AP 9/01

Types of Device Drivers
(kernel-mode)

File system drivers

— Satisfy 1/0O requests to files by issuing requests to mass storage or
network device drivers

Windows 2000 drivers

— Drivers for mass storage devices, protocol stacks, network adaptors
— Integrate with Windows 2000 power manager and PnP manager

Legacy drivers
— Written for Windows NT, run unchanged on Windows 2000
— PnP/power management not supported

Win32 subsystem display drivers
— Translate device-independent GDI requests into device-specific req.
— Interaction with video miniport driver

AP 9/01

Types of Device Drivers
(kernel-mode) (contd.)

Windows Driver Model (WDM) drivers
Implemented on Windows 2000/98/ME, PnP & power management
 Bus drivers

— Manage a logical or physical bus (PCMCIA, PCI, USB, ISA, FireWire)
— Responsible for device detection and powering the bus

 Function drivers

— Manage a particular type of device (bus drivers use PnP manager to
announce presence of devices to function drivers)

— Export device's operational interface to OS

 Filter drivers
— Augment or change behavior of a device or another driver

AP 9/01

Types of Device Drivers
(user-mode)

 Virtual device drivers (VDDs):
— Used to emulate 16-bit MS-DOS applications
— Translate MS-DOS references to 1/O ports into native Win32 1/O func.

« Win32 subsystem printer drivers
— Translate device-independent GDI requests into device-specific req.
— Forward commands to kernel-mode drivers

Documentation: Device Driver Kit (DDK)

— Kernel mode drivers are the only type of driver that can directly control
and access hardware devices

AP 9/01

Types of Kernel-mode Drivers
(another categorization)

Support for a device might be split among low-level
hardware device drivers

Class drivers

— Implement I/O processing for a particular class of devices
(disk, tape, CD-ROM)

Port drivers
— Implement 1/O processing specific to the type of I/O port (SCSI,...)

Miniport drivers

— Map generic I/O request to a port type into an adapter type
(a specific SCSI adapter,...)

AP 9/01

Driver Structure

Windows 2000 I/O system infterface

v v v
QD-ROM NTFS FAT file
file system system
' ' !
CD-ROM Tape class FTDisk
class driver driver driver
(striping, l
mirroring) Disk class
. . | '
Relationships cver
among various .
types of kernel- port !
mode device dr"|’er Miniport
drivers

drivers

J

AP 9/01

Layering a File System Driver

and a Disk Driver

Environment
subsystem
or DLL

User mode

NtWriteFile(file _handle, char_buffer)

Kernel mode

\ 4
S~ Systemservices
Write data at specified - A Adding a :
File system |, byte offset within a file PR / layered driver
driver Posommeeesas

Translate file-relative byte offset /10 ., Multi-
into disk-relative byte offset, and manager\‘. volume
call next driver (via I/O manager) disk

P et | driver

Disk driver | Call driver to write data at

disk-relative byte offset
Translate disk-relative byte offset into
physical location, and transfer data
Disk 2 k3
~—“7

Disk 1 Dis
~_ ~_

Call next driver

to write data to
Disk 3 at disk-
relative byte offset

AP 9/01

Structure of a Driver

Start 1/O routine

m Dispatch routines

Interrupt service
routine (ISR)

Add-device routine

Initialization
routine

DPC routine

I/O manager executes initialization routine when loading a driver
PnP manager calls add-device routine on device detection
Dispatch routines: open(), close(), read(), write()

Start 1/0O routine initiates transfer from/to a device

ISR runs in response to interrupt; schedules DPC

DPC routine performs actual work of handling interrupt;
starts next queued /O operation on device

AP 9/01

Other components of device drivers

Completion routines

— A layered driver may have completion routines that will notify it when a
lower-level driver finishes processing an IRP
(I/O Request Packet)

Cancel I/O routine

Unload routine
— Releases system resources

System shutdown notification routine

Error-logging routines
— Notify I1/O manager to write record to error log file (e.g., bad disk block)

Win2000: Windows Driver Model (WDM)

— Plug & Play support
— Source compatible between Win98/ME and Win2000

AP 9/01

Plug and Play (PnP)

 PnP manager recognizes hardware, allocates
resources, loads driver, notifies about config. changes
Query-remove

Not started command

Start-device . Pending Remove
command command
remove

e
— Removed
Start-device

Query-stop

) Remove
command command Surprise command
L
) remove
Pending stop

Surprise-remove
command

Stop
command

Device Plug and Play state transitions

AP 9/01

Power Manager

» based on the Advanced Configuration and Power Interface (ACPI)

State Power Consumption Software Resumption HW Latency

SO (fully on) | Maximum Not applicable None

S1 (sleeping) | Less than SO, System resumes where it left | Less than 2
more than S2 off (returns to S0O) sec.

S2 (sleeping) | Less than S1, System resumes where it left | 2 or more
more than S3 off (returns to S0) sec.

S3 (sleeping) | Less than S2, System resumes where it left | Same as S2
processor is off off (returns to S0)

S4 (sleeping) | Trickle current to power | System restarts from Long and
button and wake hibernate file and resumes undefined
circuitry where it left off (returns to S0)

S5 (fully off) | Trickle current to System boot Long and
power button undefined

System Power-State Definitions AP 9/01

Power Manager Operation

Power Options Properties 7| x|

Ppwe r-State tra n S Itl O n S a re Pawer Schemes l Alarms] Fower Meter] Advanced | Hibernate]
trl g g e re d by : t@p Select the power zcherme with the most appropriate settings for

thiz computer. Mote that changing the settings below will modify
the zelected scheme.

— System activity level

Power schemes

- System battew Ievel |F'n:|wer5uite Scheme j
— Shutdown, hibernate, or sleep Saveds. | Delte |
requests from application _ _
Sethings for PowerSuite Scheme power scheme
— User actions, such as pressing When compteris: . Plaggedin pomtoer

the power button
— Control Panel power settings

j |.¢.fter 28 ming j
j |Never

| YWhen your computer hibernates, it stares whah j |Never
memory on your hard disk and then shuts dowr
computer comes aut of hibermation, it returng ba j |Never

Power Options Properties

Lo |

Pawer Schemes] .ﬁ.larmsl Power Meter] Advanced Hi

Power-state
transitions

Lo Led

Hibernate
P ¥ Enable hibemate suppart. :l Cancel | Apply |

~ o
~—
—~—
-~
-~
—
- o

Digk. space for hibernation
Free dizk space: 2. BE4 MEB
Digk zpace required to hibermate: 128 MB AP 9/01

Synchronization

Drivers must synchronize accesses to global driver data:

« Execution of a driver can be preempted by higher-prio
threads; quantum may expire; interrupts

* Windows 2000 can run driver code simultaneously on
multiprocessor systems

W2K kernel provides special synchronization routines:
« Raise IRQL on single processor machines
« Use spinlocks on multiprocessors

AP 9/01

Data structures — File objects

 Memory-based representation of physical resource

Attribute Purpose

Filename Identifies physical file that the file object refers to

Byte offset Current location in the file (for synchronous 1/O)

Share mode Exclusive vs. Shared

Open mode Synch. vs. asynch, cached vs. non-cached, sequential, random

Pointer to device
object

Type of device on which the file resides

Pointer to volume
parameter block

Volume/partition, that the file resides on

Pointer to section
object pointers

Indicates a root structure that describes a mapped file

Pointer to private
cache map

Identifies which parts of the file are cached by the cache manager
and where they reside in the cache

AP 9/01

Driver objects and device objects

 When a thread opens a handle to a file object, the I/O
manager must determine which driver(s) it should call

Driver object:
— Represents individual driver in the system

— Records for I/O manager the address of each of the drivers dispatch
routines (entry points)

Device object:
— Represents physical/logical/virtual device on the system

— Describes characteristics such as buffer alignment, location of device
queue for incoming 1/O request packets (IRPs)

AP 9/01

The driver object

Function code 1

» Read

Function code 2 » Write

» Device control

» Start I/O

» Unload

Function code n

» Cancel

partition) partition)
AP 9/01

/O Request Packet

Environment
subsystem or
DLL

1)An application writes
a file to the printer,
passing a handle to

the file object User mode

Kernel mode

A 4
Services
2)The 1/0 manager /O manager
creates an IRP and L IRP stack
initializes first stack (W location
location IRP header
WRITE File | .| Device | | Driver
parameters object object object
3)The I/O manager uses l __ =
the driver object to locate o
the WRITE dispatch Dispatch DPC
: rt | ISR :
routine and calls it, routine(s) Start /O S routine
passing the IRP Device Driver

AP 9/01

IRP data

IRP consists of two parts:

Fixed portion (header):

— Type and size of the request

— Whether request is synchronous or asynchronous

— Pointer to buffer for buffered I/O

— State information (changes with progress of the request)

One or more stack locations:
— Function code

— Function-specific parameters

— Pointer to caller’s file object

While active, IRPs are stored in a thread-specific queue
— /O system may free any outstanding IRPs if thread terminates

AP 9/01

/O Processing —
synch. I/O to a single-layered driver

. The I/O request passes through a subsystem DLL

. The subsystem DLL calls the I/O manager's
NtWriteFile() service

. 1/O manager sends the request in form of an IRP to the
driver (a device driver)

. The driver starts the |/O operation

. When the device completes the operation and
interrupts the CPU, the device driver services the int.

. The I/O manager completes the I/O request

AP 9/01

Completing an |/O request

Servicing an interrupt:

ISR schedules Deferred Procedure Call (DPC); dismisses int.
DPC routine starts next I/O request and completes interrupt servicing
May call completion routine of higher-level driver

I/O completion:

Record the outcome of the operation in an 1/O status block

Return data to the calling thread — by queuing a kernel-mode
Asynchronous Procedure Call (APC)

APC executes in context of calling thread; copies data; frees IRP;
sets calling thread to signaled state

I/O is now considered complete; waiting threads are released

AP 9/01

Layered Drivers

Environment
subsystem or
DLL

1)Call I/O service 7)Return 1/0O pending status

User mode
v | Kernel mode
2)The 1/O manager creates an IRP, Services
initializes first stack location and /0
calls file system driver 4) manager
IRP i T 6)Return 1/0 pending status
3)File system driver fills in a 2 FiIe(jsystem
IRP stack location and calls ——— river
the disk driver IRP i T 5)Return 1/0 pending status
N J Disk
driver

4)Send IRP data to device
(or queue IRP), and return Optimization: associated IRPs
may work in parallel on a single
I/O request
~_ AP 9/01

