Unit 7: The Input/Output System

7.1. Principles of I/O Systems

Input/Output – Principles of I/O Hardware

- Major components of a computer system: CPU, memories (primary/secondary), I/O system
- I/O devices:
 - Block devices store information in fixed-sized blocks; typical sizes: 128-1024 bytes
 - Character devices delivers/accepts stream of characters
- Device controllers:
 - Connects physical device to system bus (Minicomputers, PCs)
 - Mainframes use a more complex model: Multiple buses and specialized I/O computers (I/O channels)
- Communication:
 - Memory-mapped I/O, controller registers
 - Direct Memory Access DMA

I/O Hardware - Buses

I/O Hardware – Terminals

Principles of I/O Software

- Layered organization
- Device independence
- Uniform naming (e.g.UNIX file names)
- Error handling
 - Error should be handled as close to the hardware as possible
 - Transparent error recovery at low level
- Synchronous vs. Asynchronous transfers
 - Most physical I/O is asynchronous
- Sharable vs. Dedicated devices
 - Disk vs. printer

Structuring of I/O software

- 1. Interrupt handlers
- 2. Device drivers
- 3. Device-independent OS software
- 4. User-level software

Interrupt Handlers

- Should be hidden by the operating system
- Every process starting an I/O operation should block until I/O has completed and interrupt occurs
- Interrupt handler transfers data from device (controller) and un-blocks process

Device Drivers

- Contains all device-dependent code
- Handles one type (class) of devices
- Translates abstract requests into device commands
 - Writes controller registers
 - Accesses mapped memory
 - Queues requests
- Driver may block after issuing a request:
 - Interrupt will un-block driver (returning status information)

Device-independent I/O Software

Functions of device-independent I/O software:

- Uniform interfacing for the device drivers
- Device naming
- Device protection
- Providing a device-independent block size
- Buffering
- Storage allocation on block devices
- Allocating and releasing dedicated devices
- Error reporting

Layers of the I/O System

User-Space I/O Software

- System call libraries (read, write,...)
- Spooling
 - Managing dedicated I/O devices in a multiprogramming system
 - Daemon process, spooling directory
 - Ipd line printer daemon, sendmail – simple mail transfer protocol

Example: 4.3BSD kernel I/O structure

System-call interface to the kernel					
socket	Plain file	Cooked block interface	Raw block interface	Raw tty interface	cooked TTY
protocols	File system				Line discipline
Network interface	Block-device driver			character-device driver	
The hardware					