
AP 9/01

Unit 6: Protection and Security

6.3. Windows 2000 Security Concepts

AP 9/01

Windows 2000 Security Concepts

• Configurable set of security services
• U.S. DoD C2 level for trusted operating systems
• United Stated Nation Computer Security Center

– 1995: stand-alone configurations of NT Server & NT Workstation 3.5
formally certified (see http://www.radium.ncsc.mil/tpep/epl)

• UK Information Security Evaluation and Certification
– 1996: NT S/NT WS 3.51 stand-alone/networked configurations

certified at F-C2/E3 level (see http://www.itsec.gov.uk)

• Windows NT 4.0 SP 6a has been certified for C2
– In both, networked and stand-alone configurations (U.S. DoD NCSC

and UK ITSEC)

• Windows 2000 is currently under evaluation

AP 9/01

Windows 2000 Security Features

• User Accounts

• Passwords

• File and Directory Protection

• Registry Protection

• Printer Protection

• Auditing

• Performance Monitoring

AP 9/01

Windows 2000 Security Features
(contd.)

• Secure logon facility
– Logon identifier & password

• Discretionary access control
– Owner of a resource may control access rights

• Security auditing
– Creation, access, deletion system resources

• Memory protection
– Private virtual address spaces

– Memory pages allocated to user processes will be zero-ed

• Windows 2000 enhancements:
– Active Directory account management for distributed environments

– Kerberos v.5, Secure Socket Layer 3.0, CryptoAPI, encrypting NTFS

AP 9/01

Additional Resources

• Windows NT/2000 Srv. Concepts and Planning Manual
(\support\books on NT Server CD, MSDN Lib, TechNet)
– Working with User and Group Accounts

– Managing User Work Environments

– Managing Shared Resources and Resource Security

– Monitoring Events

• Windows NT/2000 Workstation Resource Guide
– Security / Security in a Software Development Environment chapters

• Platform Software Development Kit (SDK)

• Windows 2000 Device Driver Kit (DDK)
– Kernel-mode interface to security functions

AP 9/01

Security System Components

• Security reference monitor (SRM)
– Component in NT executive (NTOSKRNL.EXE)

– Security access checks on objects, privilege manipulation, auditing

• Local security authority (LSA) server
– User-mode server (LSASS.EXE)

– Local system security policy: passwd, users, groups, auditing settings

– User authentication, sends security audit messages to Event Log

• LSA policy database
– In registry at HKEY_LOCAL_MACHINE\Security

– Contains: trusted domains, access permissions, privileges, auditing level

• Security accounts manager (SAM) server
– Set of subroutines to manage users/groups database; in LSASS process

AP 9/01

Security System Components (contd.)

• SAM database
– Users, groups, passwords: in registry at HKLM\SAM

• Default authentication package
– MSV1_0.DLL, runs in context of LSASS process

– Checks username/passwd against SAM entries; returns access token

• Logon process
– User-mode process, WINLOGON.EXE

– Sends username/passwd to LSA, creates initial process in user
session

• Network logon service
– User-mode service inside SERVICES.EXE

– Responds to network logon requests, interacts with LSASS process

AP 9/01

Security System Diagram

WinLogon
LSASS

LSA
server

SAM
server

MSV1_0.DLL

Event
Logger

LSA
policy

SAM

I/O manager Cache
manager

Security reference
monitor (SRM)

Processes
and threads

Virtual
memory

Object manager / Executive RTL
File

systems

Device drivers Kernel
Harware Abstraction Layer (HAL)

Executive

User mode
Kernel mode

AP 9/01

Communication between
SRM and LSA

• Communication via local procedure call (LPC)
– SeLsaCommandPort/SeRmCommand port for initialization

– Usage of private ports/shared memory when initialization is completed

Local security
authority (LSA) server

SeLsaCommandPort Private comm. portPrivate comm. port

SeRmCommandPort Private comm. portPrivate comm. port

Security reference
monitor (SRM

Shared
section

User mode
Kernel mode

Set audit event
Create logon session
Delete logon session

Write audit message
Delete logon session

AP 9/01

Security Descriptors and
 Access Control

• All securable objects are assigned security descriptors

• Attributes:
– Owner SID: owners security ID

– Group SID: the security ID of the primary group for the object
(used only by POSIX)

– Discretionary access control list (DACL): specifies who has what
access to the object

– System access control list (SACL): specifies which operations by
which users should be logged in the security audit log

• Access Control List (ACL)
– Header + Access Control Entries (ACEs)

– ACL with zero ACEs (null ACE): no user has access to the object

AP 9/01

• Discretionary Access Control List (DACL):
– ACE contain security ID and access masks

– 2 types of ACEs in DACL:

• Access allowed ACEs

• Access denied ACEs

– Accumulation of ACE‘s access form set of access rights granted by ACL

– No DACL present -> everyone has full access

– DACL is null (0 ACEs) -> no user has access to the object

• System Access Control List (SACL):
– Contains only one type of ACE

– Specifies which operations should be audited (stored in system audit
log)

Access Control Lists

File object

Security
descriptor

Allow
DAVEC

read data

Allow
team1

read data
write data

Allow
everyone
file exec

Object header

AP 9/01

Access Control Entries (ACEs)

• Each ACE includes an access mask
– Defines all possible actions for a particular object type

• Each object can have up to 16 specific access types
(specific access mask)

• Standard types apply to all objects:
– SYNCHRONIZE – allow a process to wait on signaled state,
– WRITE_OWNER – assign write owner,
– WRITE_DAC – write access to discretionary ACL,
– READ_CONTROL – access to security descriptor,
– DELETE – grant/deny delete access

• Generic types
– FILE_GENERIC_READ, FILE_GENERIC_WRITE,

FILE_GENERIC_EXECUTE

AP 9/01

Assigning ACLs & Inheritance

1. Use security descriptor provided at object creation

2. Lookup security descriptor in object directory
• For named objects only

• Use security descriptors marked as inheritable to form ACL

3. If neither 1 or 2 apply:
• Retrieve default ACL from caller‘s access token

• Several subsystems have hard-coded DACLs that they assign
on object creation (services, LSA, SAM objects)

Container objects can logically contain other objects
– New objects inside container object inherit permissions from parent

– Example: NTFS files inherit permissions from parent directory

AP 9/01

Validate access to an object (1)

• Determine maximum access allowed to an object
(NT 5.0 Win32 function GetEffectiveRightsFromAcl())
– Object has no DACL -> security system grants all access
– Caller has take-ownership privilege -> security system grants write-

owner access before examining DACL
– Caller is owner -> read-control & write-control rights are granted
– For each access-denied ACE that contains a SID that matches on in

caller‘s access token, ACE‘s access mask is added to
denied-access mask

– For each access-allowed ACE that contains a SID that matches on in
caller‘s access token, ACE‘s access mask is added to
granted-access mask
(unless that access has been denied)

• Granted access mask is returned as maximum allowed
access to object

AP 9/01

Validate access to an object (2)

• Determine whether a specific access is allowed based
on caller‘s access token and desired access mask
(Win32 AccessCheck(), Windows 2000 AccessCheckByType(),
TrusteeAccessToObject())
– Object has no DACL -> security system grants desired access

– Caller has take-ownership -> write-owner access is granted before
examining DACL (access is granted if it was the only access requested)

– Caller is owner -> read-control & write-control DACL rights are granted
(DACL is not examined if these were the only access rights requested)

– Examine ACEs in ACL (see next page)

– If end of DACL is reached end some access rights have not been
granted, access is denied

• Access check is done when a handle is opened
– No way to revoke access rights

AP 9/01

Validate access to an object (3)

• ACEs in DACL are examined, first-to-last,
if SID in ACE matches enabled SID (primary or group SID) in
callers access token:
– Access-denied ACE: access to object is denied

– Access-allowed ACE: granted rights (bits) are accumulated
access check succeeds if all requested rights have been granted

• Convention:
– Access-denied ACEs are placed before access-allowed ACEs

– Win32 ACL functions allow to build ACL with ACE out of order
• Useful: emulate UNIX user/group/other-rights on NT files

• See chown-Example

AP 9/01

Example

AP 9/01

Example: Access granted

Security Token

Used ID: FredMgr
Group Ids: Users

Mgrs
Everyone

Privilges: None
Desired access

read/write

File object

Security
descriptor

AccessAllowed
FredMgr
Read (RX)

AccessAllowed
Mgrs
Special Access(RW)

AccessAllowed
Everyone
Special Access(X)

ACE ACE ACE

Discretionary Access Control List

AP 9/01

Example: Access denied

Security Token

Used ID: FredMgr
Group Ids: Users

Mgrs
Everyone

Privilges: None
Desired access

read/write

File object

Security
descriptor

AccessDenied
Mgrs
(No Access)

AccessAllowed
FredMgr
Read(RX)

AccessAllowed
Everyone
Write(W)

ACE ACE ACE

Discretionary Access Control List

AP 9/01

Windows 2000: addl. Details

• Order of ACEs is more complicated:
– Object-specific ACEs introduced

– Automatic inheritance of ACEs

• Non-inherited ACEs go before inherited ACEs

• Within both groups, ACEs are placed according to
their type:
– Access-denied ACEs before access-allowed ACEs

– Object-specific ACEs first, then sub-object specific ACEs, etc.

AP 9/01

Access tokens

• Contains security identification of process or thread
– Security ID (SID)

– List of groups that the user is member of

– List of privileges that are enabled/disabled

• Win32 functions create/manipulate access tokens
– NT internal: object pointed to by process/thread block

• Processes inherit primary access token from creator

• At logon, LSASS verifies user/passwd and returns
access token stored in SAM to WinLogon
– WinLogon assigns the token to first user process

– Win32 LogonUser() generates access token; can be used to create
process with specific token via Win32 CreateProcessAsUser()

AP 9/01

Impersonation

• Threads may have their own access token
– If they represent a client (impersonate)

– These threads may have different access token than process

-> Server threads may perform operations in client‘s security profile

– Client can limit level of impersonation (security QoS)
• SECURITY_ANONYMOUS, SECURITY_IDENTIFICATION,

SECURITY_IMPERSONATION flags to CreateFile()

• Threads get own access token via
– Win32 ImpersonateSelf() – clones process primary access token

– Thread may take security token of client:
ImpersonateNamedPipeClient(), RpcImpersonateClient(),
DdeImpersonateClient(), ImpersonateLoggedOnUser(),
ImpersonateSecurityContext() – see MSDN library

AP 9/01

Process and Thread
Security Structures

• Process/thread/access token objects have security
descriptors

• Thread 2 has an impersonation token
• Thread 1 defaults to process access token

Process

Security
descriptor

Access
token

Security
descriptor

Thread 1

Security
descriptor

Thread 2

Security
descriptor

Access
token

Access
token

Security
descriptor

Access
token

AP 9/01

Experiment: Viewing Process and
Thread Security Information

Access token

AP 9/01

SYSTEM access token

• Many system processes (Services) run under special
access token named SYSTEM

• Similar privileges as Administrators account in SAM

Restrictions for process under SYSTEM access token:

• No domain credential – no access to network resources

• Can‘t share objects with other non-SYSTEM user
processes
(unless it creates them using a NULL DACL or a DACL with explicit
access rights for user/group)

AP 9/01

Security Auditing

• Object manager can generate audit events as result of
an access check

• Applications can generate events via Win32 func.
• Processes that call audit system services must have

SeAuditPrivilege – prevent flooding security log
• Audit policy of local system decides which events to log

– Maintained by LSA
– LSA sends messages to SRM to inform about auditing policy

(at system startup and when policy changes)
– LSA receives audit messages from SRM and sends it to Event Log
– LSA and SAM generate own audit events
– LPC or shared memory communication between LPC SRM, LSA, SAM,

and Event Logger (depending on message size)

AP 9/01

Flow of security audit records

Protected
subsystem

Win32
server

Security subsystem

LSA
authentication

SAM

LSA
auditing

Event
Logger

To security log

User mode
Kernel mode

Security
Reference

Monitor (SRM)

Object manager
I/O parse
NTFS
Mailslot
Configuration registry
Process manager

Audit records

Audit system
service calls Audit policy

RPC

LPCLPC

AP 9/01

Logon

• WinLogon is trusted process
– Intercepts logon requests from keyboard

– Calls LSA

• Identification/authentication aspects in replacable DLL:
– MSGINA.DLL (default Graphical Id. & Auth.)

– Developers can bring in their own GINA
(logon via SmartCards, etc.)

WinLogon
process

LSA SAM

Authentication
packages

MSV1_0

LPC

Kerberos

AP 9/01

WinLogon Initialization

At system initialization, WinLogon performs these steps:
• Create & open window station:

– Represent keyboard, mouse, monitor
– Create SID with only one ACE containing WinLogon SID
– No process can access workstation unless allowed by WinLogon

• Create & open three desktops:
– Application, WinLogon, screen saver desktops
– Only WinLogon can access logon desktop (SID)
– No other process has access to code/data connected to logon desktop

• Establish LPC connection with LSA
– Via LsaRegisterLogonProcess()
– Call LsaLookupAuthenticationPackage() to get association ID for

MSV1_0/Kerberos to be used for logon authentication

AP 9/01

WinLogon: Set up
Window Environment

• Initialize/register window class data structure
– Associate WinLogon procedure with its windows

• Register secure attention sequence (SAS – ctrl-alt-del)
– Associate SAS with WinLogon window

– WinLogon gets control of screen whenever SAS is entered
(avoid Trojan horses)

• Register the window for log off/screen saver timeout
– Win32 subsystem checks to verify that process requesting notification

is the WinLogon process

• After initialization, WinLogon desktop is active
– Locked by WinLogon, unlocked only to switch to application/screen

screen desktops

AP 9/01

User Logon Steps

• User presses SAS
– WinLogon switches to secure desktop
– Prompts for username/password
– Creates a unique local group for this user (for keyboard, screen, mouse)
– WinLogon passes this group to LSA (LsaLogonUser())
– This group will be included in logon process token

• LSA calls authentication package with user/passwd
– MSV1_0 implements Windows 2000 authentication (stand-alone syst.)
– Kerberos implements auth. for members of Windows 2000 domain
– All packages on the system are in the registry at

HKLM\System\CurrentControlSet\Control\Lsa

• MSV1_0 takes user/passwd and sends request to SAM
– SAM retrieves account info: passwd, groups, account restrictions

AP 9/01

User Logon Steps (contd.)

• MSV1_0 checks account restrictions
– Hours or type of access allowed
– MSV1_0 compares passwd and generates unique ID for logon session

(logon user ID – LUID)
– Creates logon session by passing LUID + addl. info. to LSA

• LSA looks in local policy database
– Logon will be terminated if user‘s requested access is not allowed

(interactive, network, service process)

• LSA accumulates info for access token
– Includes user‘s SID, group SIDs, user profile info (home dir...)
– Includes addl. security Ids/privileges (Everyone, Interactive, etc.)

• Executive creates access token; passes it to LSA
– Primary token: interact./service logon; impersonation token: netw. logon
– LSA duplicates token, passes handle to WinLogon (+LUID, profile info)

