
AP 9/01

Unit 4: Memory Management

4.3. Windows 2000 Memory Structures

AP 9/01

Windows 2000 Memory Management
Structures and Details

• Classical virtual memory management
– Flat virtual address space per process

– Private process address space and HyperSpace

– Global system address space

– Hardware protection between address spaces & kernel/user mode

• Object based
– Section object and object-based security (ACLs...)

• Lazy evaluation
– Demand paging

– Sharing – usage of prototype PTEs (page table entries)

– Extensive usage of copy_on_write

– ...whenever possible

AP 9/01

Memory Manager: Services

• Caller can manipulate own/remote memory
– Parent process can allocate/deallocate, read/write memory of child

process

– Subsystems manage memory of their client processes this way

• Most services are exposed through Win32 API
– Page granularity virtual memory functions (Virtualxxx...)

– Memory-mapped file functions (CreateFileMapping, MapViewofFile)

– Heap functions (Heapxxx, Localxxx (old), Globalxxx (old))

• Services for device drivers/kernel code (Mm...)

AP 9/01

Reserving & Committing Memory

• Optional 2-phase approach to memory allocation:
1. Reserve address space (in multiples of page size)
2. Commit storage in that address space
– Can be combined in one call (Win32 VirtualAlloc, VirtualAllocEx)

• Reserved memory:
– Range of virtual addresses reserved for future use (contiguous buffer)
– Accessing reserved memory results in access violation
– Fast, inexpensive

• Committed memory:
– Has backing store (pagefile.sys, memory-mapped file)
– Either private or mapped into a view of a section
– Decommit via VirtualFree, VirtualFreeEx

A thread‘s user-mode stack is constructed using
this 2-phase approach: initial reserved size is 1MB,
only 2 pages are committed: stack & guard page

AP 9/01

Windows NT/2000
Memory Management - Features

• 4 GB Virtual Address Space (VAS) per process
– Default: 2GB per process and 2GB system wide

• System wide space includes 512-960 MB for system cache manager

– /3GB switch in boot.ini, since NT4 SP3, for „large address space
aware“ apps (need \support\debug\imagecfg.exe to set flag on image)

• System wide space only 1GB

• Support for memory-mapped files
– Backing store: file itself or pagefile.sys (up to 16)

• Page sharing between processes (shared memory)
• Support for:

– Cache manager (cache is managed as Working Set)
– Working Set management
– I/O manager (Memory Desc. Lists, system PTE)
– POSIX subsystem – VAS cloning for fork()

AP 9/01

Features new to Windows 2000
Memory Management

• Support of 64 GB physical memory on Intel platform
– PAE – physical address extension (36 bit, changes PDE/PTE structs)

– New version of kernel (ntkrnlpa.exe, krnlpamp.exe)
• /PAE switch in boot.ini

• Integrated support for Terminal Server
– HydraSpace : per session

– In NT 4 Terminal Server had a specific kernel

• Driver Verifier: verifier.exe
– Pool checking, IRQL checking

– Low resources simulation, pool tracking, I/O verification

• Performance & Scalability enhancements

AP 9/01

Shared Memory & Mapped Files

• Shared memory +
copy-on-write per
default

• Executables are
mapped as read-only

• Memory manager uses
section objects to
implement shared
memory (file mapping
objects in Win32)

compiler
image

Physical memory

Process 1 virtual memory

Process 2 virtual memory

AP 9/01

Protecting Memory

Any read/write attempt raises EXCEPTION_GUARD_PAGE
and turns off guard page status

PAGE_GUARD

Write access causes creation of private copy of pg.PAGE_EXECUTE_
WRITECOPY

Write access causes the system to give process a private copy
of this page; attempts to execute code cause access violation

PAGE_WRITECOPY

All accesses permitted (not impl. by x86 or Alpha)PAGE_EXECUTE_
READWRITE

Read/execute access permitted (not implemented by x86 or
Alpha)

PAGE_EXECUTE_
READ

Any read/write causes access violation; execution of code is
permitted (not implemented by x86 or Alpha)

PAGE_EXECUTE

Read/write accesses permittedPAGE_READWRITE

Write/execute causes access violation; read permittedPAGE_READONLY

Read/write/execute causes access violationPAGE_NOACCESS

DescriptionAttribute

AP 9/01

Windows 2000 User Process
Address Space Layout

No-access region to prevent threads from passing
buffers that straddle user/system space boundary

64 KB0x7FFF0000 –
0x7FFFFFFF

No-access region60 KB0x7FFE1000 –
0x7FFEFFFF

Shared user data page – read-only, mapped to
system space, contains system time, clock tick count,
version number (avoid kernel-mode transition)

4 KB0x7FFE0000 -
0x7FFE0FFF

Process Environment Block (PEB)4 KB0x7FFDF000 -
0x7FFDFFFF

Thread Environment Block (TEB) for first thread,
more TEBs are created at the page prior to that page

4 KB0x7FFDE000 -
0x7FFDEFFF

The private process address space2 GB minus at
least 192kb

0x10000 -
07FFEFFFF

No-access region to catch incorrect pointer ref.64 KB0x0 – 0xFFFF

FunctionSizeRange

AP 9/01

Windows 2000 Virtual Memory Use
Performance Counters

Ratio of committed bytes to
commit limit

MmTotalCommittedPages
/ MmTotalCommitLimit

Memory: %Commited
Bytes in Use

Amount of memory (in bytes) that
can be committed without
increasing size of paging file

MmTotalCommit-LimitMemory: Commit
Limit

Amount of committed private
address space that has a backing
store

MmTotalCommitedPagesMemory: Committed
Bytes

DescriptionSystem VariablePerformance
Counter

AP 9/01

Windows 2000 Address Space: Single
Process‘s Performance Counters

Peak of Process: Page File BytesProcess: Peak Page
File Bytes

Same as Process: Private BytesProcess: Page File Byte

Size of the private (nonshared) committed address
space (same as Process: PageFileBytes)

Process: Private Bytes

Total size of the process address space (including
shared as well as private pages)

Process: Virtual Bytes

DescriptionPerformance Counter

AP 9/01

System Address Space Layout

• Hyperspace:

– Special region to map proc.
working set list, to map pages
for zeroing, to set up proc‘
address space on creation

• System page table entries (PTEs):

– Pool of PTEs used to map
system pages – I/O space,
kernel stacks, memory
descriptor lists

System code (NTOSKRNL,
HAL, boot drivers) and initial

nonpaged pool

System mapped views
(e.g., WIN32K.SYS)

Unused – no accessUnused – no access

Process page tables
and page directory

Hyperspace and process
working set list

Unused – no access

System working set list

System cache

Paged pool

System PTEs

Nonpaged pool expansion

Crash dump information

HAL reserved

AP 9/01

Address Translation - Mapping virtual
addresses to physical memory

• Mapping via page table entries

• Indirect relationship between
virtual pages and physical
memory

Virtual
pages

Physical memory

Page table
entries

10 10 12

2231 21 11 012

Page directory
index

Page table
index

Byte index

x86:

user

system

user

system

AP 9/01

Address Translation
Hardware Support Intel x86

• Intel x86 provides two levels of address translation
– Segmentation (mandatory, since 8086)

– Paging (optional, since 80386)

• Segmentation: first level of address translation
– Intel: logical address (selector:offset) to linear address (32 bits)

– NT virtual address is Intel linear address (32 bits)

• Paging: second level of address translation
– Intel: linear address (32 bits) to physical address

– NT: virtual address (32 bits) to physical address

– Physical address: 32 bits (4 GB) all NT versions, 36 bits (64 GB) PAE

– Page size:
• 4 kb since 80386 (all NT versions)

• 4 MB since Pentium Pro (supported in NT 4, Windows 2000)

AP 9/01

Intel x86 Segmentation

Index TI=0 RPL

315 2 1 0Intel
Logical
address

Segment Selector
31 0

Offset

:

Global Descriptor
Table (GDT)

Limit=0xfffffAccess

Base Address = 0

Limit=0xfffffAccess

Base Address = 0
+

Intel
Linear
Addresses

NT Virtual
Addresses 0

0xffffffff

AP 9/01

Intel x86 Paging – Address Translation

10 10 12

2231 21 11 0
Intel Linear
Address 12

4Mb PDE

4Kb PDE

NT Virtual
Address

Page directory
1024x4byte entries
(one per process)

cr 3

Physical address

PTE

Page table
1024 entries

Physical Address

operand

4 Kb page

operand

4 Mb page

22 bit
offset

4kb page
frame

4MB page frame

Physical Memory

0

1

2

3

n

Page Frame
Number Database

NT-PFN
Database

Page tables are created on demand

AP 9/01

Translating a virtual address:

1. Memory management HW locates page directory for
current process (cr3 register on Intel, PDR on Alpha)

2. Page directory index directs to requested page table

3. Page table index directs to requested virtual page

4. If page is valid, PTE contains physical page number
(PFN – page frame number) of the virtual page
• Memory manager fault handler locates invalid pages and tries to

make them valid

• Access violation/bug check if page cannot be brought in (prot. fault)

5. When PTE points to valid page, byte index is used to
locate address of desired data

AP 9/01

Page directories & Page tables

• Each process has a single page directory (phys. addr.
in KPROCESS block, at 0xC0300000, in cr3 (x86))
– cr3 is re-loaded on inter-process context switches

– Page directory is composed of page directory entries (PDEs) which
describe state/location of page tables for this process

• Page tables are created on demand

– x86: 1024 page tables describe 4GB

• Each process has a private set of page tables

• System has one set of page tables
– System PTEs are a finite resource: computed at boot time

– HKLM\System...\Control\SessionManager\SystemPages

AP 9/01

System and
process-private page tables

• On process creation, system space page directory entries point to
existing system page tables

• Not all processes have same view of system space (after
allocation of new page tables)

PTE 0 PDE 0

PDE 511

PDE n Sys PTE 0

Sys PTE n

PTE 0PDE 0

PDE 511

PDE nProcess 1
page tables

System
page tables

Process 1
page directory

Process 2
page directory

private

PDE 512PDE 512

Process 2
page tables

AP 9/01

Page Table Entries

• Page tables are array of Page Table Entries (PTEs)

• Valid PTEs have two fields:
– Page Frame Number (PFN)

– Flags describing state and protection of the page

Page frame
number

VU P Cw Gi L D A Cd Wt O W

Res (writable on MP Systems)
Res
Res
Global
Res (large page if PDE)
Dirty
Accessed
Cache disabled
Write through
Owner
Write (writable on MP Systems)

valid

Reserved bits
are used only
when PTE is
not valid

31 12 0

AP 9/01

PTE Status and Protection Bits
(Intel x86 only)

Uniproc: Indicates whether page is read/write or read-only;
Multiproc: ind. whether page is writeable/write bit in res. bit

Write

Disables caching of writes; immediate flush to diskWrite through

Indicates whether translation maps to page in phys. Mem.Valid

Indicates whether user-mode code can access the page of
whether the page is limited to kernel mode access

Owner

Indicates that PDE maps a 4MB page (used to map kernel)Large page

Translation applies to all processes
(a translation buffer flush won‘t affect this PTE)

Global

Page has been written toDirty

Disables caching for that pageCache disabled

Page has been readAccessed

Meaning on x86Name of Bit

AP 9/01

Translation Look-Aside Buffer (TLB)

• Address translation requires two lookups:
– Find right table in page directory

– Find right entry in page table

• Most CPU cache address translations
– Array of associative memory: translation look-aside buffer (TLB)

– TLB: virtual-to-physical page mappings of most recently used pages

Virtual page #: 5Virtual page #: 17

Virtual page #: 64

Virtual page #: 17

Virtual page #: 7

Virtual page #: 65

Page frame 290

Invalid

Page frame 1004

Invalid

Page frame 801

Simultaneous
read and compare

AP 9/01

Page Fault Handling

• Reference to invalid page is called a page fault

• Kernel trap handler dispatches:
– Memory manager fault handler (MmAccessFault) called

– Runs in context of thread that incurred the fault

– Attempts to resolve the fault or
raises exception

• Page faults can be caused by variety of conditions

• Four basic kinds of invalid Page Table Entries (PTEs)

AP 9/01

Reasons for access faults

• Accessing a page that is not resident in memory but on
disk in page file/mapped file
– Allocate memory and read page from disk into working set

• Accessing page that is on standby or modified list
– Transition the page to process or system working set

• Accessing page that has no committed storage
– Access violation

• Accessing kernel page from user-mode
– Access violation

• Writing to a read-only page
– Access violation

AP 9/01

Reasons for access faults (contd.)

• Writing to a guard page
– Guard page violation (if a reference to a user-mode stack,

perform automatic stack expansion)

• Writing to a copy-on-write page
– Make process-private copy of page and replace original in process or

system working set

• Referencing a page in system space that is valid but
not in the process page directory
 (if paged pool expanded after process directory was created)
– Copy page directory entry from master system page directory

structure and dismiss exception

• On a multiprocessor system: writing to valid page that
has not yet been written to
– Set dirty bit in PTE

AP 9/01

Invalid PTEs and their structure

• Page file: desired page resides in paging file
in-page operation is initiated

Page file offset Protection
Page
File No 0

Transition
Prototype
Valid31 12 11 10 9 5 4 1 0

• Demand Zero: pager looks at zero page list;
if list is empty, pager takes list from standby list and
zeros it;

PTE format as shown above, but page file number and
offset are zeros

AP 9/01

Invalid PTEs and their structure
(contd.)

• Transition: the desired page is in memory on either the standby,
modified, or modified-no-write list
– Page is removed from the list and added to working set

Page Frame Number Protection1

Transition
Prototype
Protection
Cache disable
Write through
Owner
Write
Valid

31 12 11 10 9 5 4 1 0

1 0

23

• Unknown: the PTE is zero, or the page table does not yet exist

- examine virtual address space descriptors (VADs) to see
whether this virtual address has been reserved

- Build page tables to represent newly committed space

AP 9/01

Prototype PTEs

• Software structure to manage potentially shared pages
– Array of prototype PTEs is created as part of section object

(part of segment structure)
– First access of a page mapped to a view of a section object:

memory manager uses prototype PTE to fill in real PTE used for
address translation;

– Reference count for shared pages in PFN database

• Shared page valid:
– process & prototype PTE point to physical page

• Page invalidated:
– process PTE points to prototype PTE

• Prototype PTE describes 5 states for shared page:
– Active/valid, Transition, Demand zero, Page file, Mapped file

• Layer between page table and page frame database

AP 9/01

Prototype PTEs for shared pages –
 the bigger picture

• Two virtual pages in a mapped view

• First page is valid; 2nd page is invalid and in page file
– Prototype PTE contains exact location

– Process PTE points to prototype PTE

PFN Valid PFN n

Invalid - points
to prototype

PTE
Valid PFN n

Invalid – in
page file

Segment
structure

PFN n

PFN n

PTE
addressShare
count=1

PFN entryPhysical
memory

Prototype page
table

Page table

Page directory

AP 9/01

In-Paging I/O

• Occurs when read operation must be issued to a file to
satisfy page fault
– Page tables are pageable -> additional page faults possible

• In-page I/O is synchronous
– Thread waits until I/O completes
– Not interruptible by asynchronous procedure calls

• During in-page I/O: faulting thread does not own critical
memory management synchronization objects
Other threads in process may issue VM functions, but:
– Another thread could have faulted same page: collided page fault
– Page could have been deleted (remapped) from virtual address space
– Protection on page may have changed
– Fault could have been for prototype PTE and page that maps

prototype PTE could have been out of working set

AP 9/01

Page files

• Windows 2000 supports up to 16 paging files

• Once open, page file can‘t be deleted
while system is running
– System process maintains open handle to each page file

• NtCreatePageFile system service in NTDLL.DLL
(internal only)

• Page files are always created as uncompressed files

• Memory management tracks page file usage:
– Global: commitment

– On a per-process basis: Page file quota

– VM allocation will fail when commit limit has reached

AP 9/01

Virtual address descriptors (VADs)

• Memory manager uses demand paging algorithm
• Lazy evaluation is also used to construct page tables

– Reserved vs. commited memory
– Even for commited memory, page table are constructed on demand

• Memory manager maintains VAD structures to keep
track of reserved virtual addresses
– Self-balancing binary tree

• VAD store:
– range of addresses being reserved;
– whether range will be shared or private;
– Whether child process can inherit contents of the range
– Page protection applied to pages within the address range

AP 9/01

Page Frame Number-Database

• One entry (24 bytes) for each physical page
– Describes state of each page in physical memory

• Entries for active/valid and transition pages contain:
– Original PTE value (to restore when paged out)
– Original PTE virtual address and container PFN
– Working set index hint (for the first process...)

• Entries for other pages are linked in:
– Free, standby, modified, zeroed, bad lists (parity error will kill kernel)

• Share count (active/valid pages):
– Number of PTEs which refer to that page; 1->0: candidate for free list

• Reference count:
– Locking for I/O: INC when share count 1->0; DEC when unlocked
– Share count = 0 & reference count = 1 is possible
– Reference count 1->0: page is inserted in free, standby or modified lists

AP 9/01

Page Frame Database –
states of pages in physical memory

Page has generated parity or other hardware errorsBad

Page is free and has been initialized by zero page threadZeroed

Page is free but has dirty data in it – cannot be given to user
process – C2 security requirement

Free

Modified page, will not be touched by modified page write, used
by NTFS for pages containing log entries (explicit flushing)

Modified
no write

Removed from working set, modified, not yet written to diskModified

Page belonged to a working set but was removed; not modifiedStandby

Page not owned by a working set, not on any paging list
I/O is in progress on this page

Transition

Page is part of working set (sys/proc), valid PTE points to itActive/valid

DescriptionStatus

AP 9/01

Page tables and page frame database

valid

Invalid:
disk address

Invalid:
transition

valid

Invalid:
disk address

Valid
valid

Invalid:
transition

Invalid:
disk address

Prototype PTE

Process 1
page table

Process 2
page table

Process 3
page table

Active

Standby

Active

Active

Modified

Zeroed

Free

Standby

Modified

Bad

Modified
no write

AP 9/01

Paging Dynamics

StandbyStandby
PagePage
ListList

ZeroZero
PagePage
ListList

FreeFree
PagePage
ListList

ProcessProcess
WorkingWorking

SetsSets

page read frompage read from
disk or kerneldisk or kernel
allocationsallocations

demand zerodemand zero
page faultspage faults

working setworking set
replacementreplacement

ModifiedModified
PagePage
ListList

modifiedmodified
pagepage
writerwriter

zerozero
pagepage

threadthread

““softsoft””
pagepage
faultsfaults

BadBad
PagePage
ListList

Private pagesPrivate pages
at process exitat process exit

AP 9/01

MM: Process Support

• MmCreateProcessAddressSpace – 3 pages
– The page directory

• Points to itself
• Map the page table of the hyperspace
• Map system paged and nonpaged areas
• Map system cache page table pages

– The page table page for working set
– The page for the working set list

• MmInitializeProcessAddressSpace
– Initialize PFN for PD and hyperspace PDEs
– MiInitializeWorkingSetList
– Optional: MmMapViewOfSection for image file

• MmCleanProcessAddressSpace,
• MmDeleteProcess AddressSpace

AP 9/01

MM: Process Swap Support

• MmOutSwapProcess / MmInSwapProcess

• MmCreateKernelStack
– MiReserveSystemPtes for stack and no-access page

• MmDeleteKernelStack
– MiReleaseSystemPtes

• MmGrowKernelStack

• MmOutPageKernelStack
– Signature (thread_id) written on top of stack before write

– The page goes to transition list

• MmInPageKernelStack
– Check signature after stack page is read / bugcheck

AP 9/01

MM: Working Sets

• Working Set:
– The set of pages in memory at any time for a given process, or

– All the pages the process can reference without incurring a page fault

– Per process, private address space

– WS limit: maximum amount of pages a process can own

– Implemented as array of working set list entries (WSLE)

• Soft vs. Hard Page Faults:
– Soft page faults resolved from memory (standby/modified page lists)

– Hard page faults require disk access

• Working Set Dynamics:
– Page replacement when WS limit is reached

– NT 4.0: page replacement based on modified FIFO

– Windows 2000: Least Recently Used algorithm (uniproc.)

AP 9/01

MM: Working Set Management

• Modified Page Writer thread
– Created at system initialization

– Writing modified pages to backing file

– Optimization: min. I/Os, contigous pages on disk

– Generally MPW is invoked before trimming

• Balance Set Manager thread
– Created at system initialization

– Wakes up every second

– Executes MmWorkingSetManager

– Trimming process WS when required: from current down to minimal
WS for processes with lowest page fault rate

– Aware of the system cache working set

– Process can be out-swapped if all threads have pageable kernel stack

AP 9/01

MM: I/O Support

• I/O Support operations:
– Locking/Unlocking pages in memory

– Mapping/Unmapping Locked Pages into current address space

– Mapping/Unmapping I/O space

– Get physical address of a locked page

– Probe page for access

• Memory Descriptor List
– Starting VAD

– Size in Bytes

– Array of elements to be filled with physical page numbers

• Physically contiguous vs. Virtually contiguous

AP 9/01

MM: Cache Support

• System wide cache memory
– Region of system paged area reserved at initialization time
– Initial default: 512 MB (min. 64MB if /3GB, max 960 MB)
– Managed as system wide working set

• A valid cache page is valid in all address spaces
• Lock the page in the cache to prevent WS removal

– WS Manager trimming thread is aware of this special WS
– Not accessible from user mode
– Only views of mapped files may reside in the cache

• File Systems and Server interaction support
– Map/Unmap view of section in system cache
– Lock/Unlock pages in system cache
– Read section file in system cache
– Purge section

AP 9/01

MM: POSIX fork() support

• MiCloneProcessAddressSpace
– Copy parent‘s address space to the child address space

– Examines each VAD‘s inheritance attribute

– If needed, copies each PTE into the new address space

– For private pages: use prototype PTEs,
copy-on-write between the two processes

