
AP 9/01

Unit 3: Processes and Threads

3.3. Windows 2000 Process and Thread Internals

AP 9/01

Windows 2000 Process and Thread
Internals

Data Structures for each
process/thread

• Executive process block
(EPROCESS)

• Executive thread block
(ETHREAD)

• Win32 process block

• Process environment block

• Thread environment block

Process
environment

block

Thread
environment

block

Process
block

(EPPROC
ESS)

Thread block
(EPPROCESS)

Win32 process block

 Handle table

...

Process address space

System address space

AP 9/01

Structure of Executive Process Block

Kernel process block (or PCB)
Process ID

Parent process ID
Exit Status

Create and exit times
Next process block

Quota block
Memory management information

Exception port
Debugger port

Process environment block
Image filename

Image base address
Process priority class

PsActiveProcessHead EPROCESS

Primary access token

Handle table

Win32 process block

AP 9/01

Key substructure:
Kernel process block

Sometimes called PCB – process control block

Dispatcher header

Kernel time
User time

Inswap/Outswap list entry

Process spinlock
Processor affinity

Resident kernel stack count
Process base priority

Default thread quantum
Process state
Thread seed

Disable boost flag

Process page directory

KTHREAD

AP 9/01

Key substructure:
Process Environment Block

• Always mapped
at address
0x7FFDF000
(user space)

• Image loader,
heap manager,
Win32 system
DLLs use this
info

Image base address
Module list

Thread-local storage data
Code page data

Critical section time-out
Number of heaps

Heap size info

GDI shared handle table
OS version no info
Image version info

Image process affinity mask

Process
heap

AP 9/01

Process-Related System Variables

Handle table for process and
thread client IDs

Pointer to
HANDLE_TABLE

PspCidTable

Count of registered process
notification routines

DWORDPspCreateProcess-
NotifyRoutineCount

Pointers to routines to be called
on process creation and
deletion (max. 8)

Array of 32-bit
pointers

PspCreateProcess-
NotifyRoutine

Pointer to process block of
initial system process (PID 2)
that contains system threads

Pointer to
EPROCESS

PsInitialSystemProcess

Idle process blockEPROCESSPsIdleProcess

List head of process blocksQueue headerPsActiveProcessHead

DescriptionTypeVariable

AP 9/01

Process-Related Performance
Counters

Number of threads in a processProcess: ThreadCount

PID – process IDs are re-usedProcess: ID Process

Total lifetime of process in secondsProcess: ElapsedTime

Percentage of time that the threads in the
process have run in user mode

Process:%UserTime

Percentage of CPU time that threads have
used during specified interval

%PrivilegedTime + %UserTime

Process:%ProcessorTime

Percentage of time that the threads in the
process have run in kernel mode

Process:%PrivilegedTime

FunctionObject: Counter

AP 9/01

Process-Related Functions

Returns exit code for another process, indicating how
and why process was shut down

GetExitCodeProcess

Obtains another process‘s timing info (%user/%kernel)GetProcessTimes

Empties another process‘s instruction cacheFlushInstruction-
Cache

Terminates a processTerminateProcess

Exits current processExitProcess

Returns a handle of specified process objectOpenProcess

Creates new proc.&thread using alternate security ID
and then executes specified .EXE

CreateProcess-
AsUser

Create new proc.& thread; using callers security IDCreateProcess

DescriptionFunction

AP 9/01

Process-Related Functions (contd.)

Defines shutdown priority and number of retries for
current process

Get/SetProcess-
ShutdownParameters

Returns a specific environment variableGetEnvironment-
Variable

Returns address of environment blockGetEnvironment-
Strings

Returns contents of STARTUPINFO structure
specified during CreateProcess

GetStartupInfo

Returns major/minor versions of Windows version on
which the specified process expects to run

GetProcessVersion

Returns ID of current processGetCurrentProcessID

Returns command-line string passed to the processGetCommandLine

DescriptionFunction

AP 9/01

Flow of CreateProcess

1. Open the image file (.EXE) to be executed inside the
process

2. Create Windows NT executive process object
3. Create initial thread (stack, context, Win NT executive

thread object)
4. Notify Win32 subsystem of new process so that it can

set up for new proc.& thread
5. Start execution of initial thread (unless

CREATE_SUSPENDED was specified)
6. In context of new process/thread: complete

initialization of address space (load DLLs) and begin
execution of the program

AP 9/01

The main Stages NT follows
to create a process

Open EXE and
create selection

object

Create NT
process object

Create NT
thread object

Notify Win32
subsystem

Set up for new
process and

thread

Start execution
of the initial

thread

Return to caller

Final
process/image

initialization

Start execution
at entry point to

image

Creating process

Win32 subsystem

New process

AP 9/01

CreateProcess: some notes

• CreationFlags: independent bits for priority class
-> NT assigns lowest-prio class set

• Default prio class is normal
unless creator has prio class idle

• If real-time prio class is specified and
creator has insufficient privileges:
prio class high is used

• Caller‘s current desktop is used
if no desktop is specified

Priority classes:
• Real-time
• High
• Normal
• idle

AP 9/01

Opening the image to be executed

What kind of
application is it?

Run CMD.EXE Run NTVDM.EXE Use .EXE directly

Run NTVDM.EXERun POSIX.EXERun OS2.EXE

Win16 Win32

OS/2 1.x MS-DOS .EXE,
.COM, or .PIF

MS-DOS .BAT
or .CMD

POSIX

AP 9/01

If executable has no Win32 format...

• CreateProcess uses Win32 „support image“

• No way to create non-Win32 processes directly
– OS2.EXE runs only on Intel systems

– Multiple MS-DOS apps may share virtual dos machine

– .BAT of .CMD files are interpreted by CMD.EXE

– Win16 apps may share virtual dos machine (VDM)
Flags: CREATE_SEPARATE_WOW_VDM

 CREATE_SHARED_WOW_VDM
Default: HKLM\System...\Control\WOW\DefaultSeparateVDM

– Sharing of VDM only if apps run on same desktop under same security

• Debugger may be specified under (run instead of app !!)
\Software\Microsoft\WindowsNT\CurrentVersion\ImageFileExecutionOptions

AP 9/01

Process Creation - next Steps...

• CreateProcess has opened Win32 executable and
created a section object to map in proc‘s addr space

Now: create executive proc obj via NtCreateProcess
– Set up EPROCESS block

– Create initial process address space (page directory, hyperspace
page, working set list)

– Create kernel process block (set inital quantum)

– Conlude setup of process address space (VM, map NTDLL.DLL, map
lang support tables, register process: PsActiveProcessHead)

– Set up Process Environment Block

– Complete setup of executive process object

AP 9/01

Further Steps...(contd.)

• Create Initial Thread and Its Stack and Context
– NtCreateThread; new thread is suspended until CreateProcess returns

• Notify Win32 Subsystem about new process
KERNEL32.DLL sends message to Win32 subsystem including:
– Process and thread handles
– Entries in creation flags
– ID of process‘s creator
– Flag describing Win32 app (CSRSS may show startup cursor)

• Win32: duplicate handles (inc usage count), set prio class, bookkeeping
– allocate CSRSS proc/thread block, init exception port, init debug port
– Show cursor (arrow & hourglass), wait 2 sec for GUI call, then wait 5

sec for window

AP 9/01

CreateProcess: final steps

Process Initialization in context of new process:

• Lower IRQL level (dispatch -> Async.Proc.Call. level)

• Enable working set expansion

• Queue APC to exec LdrInitializeThunk in NTDLL.DLL

• Lower IRQL level to 0 – APC fires,
– Init loader, heap manager, NLS tables, TLS array, crit. sect. Structures

– Load DLLs, call DLL_PROCESS_ATTACH func

• Debuggee: all threads are suspended
– Send msg to proc‘s debug port

(Win32 creates CREATE_PROCESS_DEBUG_INFO event)

• Image begins execution in user-mode (return from trap)

AP 9/01

Thread Internals
Fibers vs. Threads

• NT Threads are scheduled by the kernel

• Kernel mode/user mode threads

• Many Unix thread implementations are user-space

• NT 3.51/SP3 has introduced Fibers (lightweight threads)
– Simplify porting of multithreaded Unix apps

– Programmer schedules Fibers manually (co-operative)

– Fibers are not scheduled by the system

ConvertThreadToFiber

CreateFiber, SwitchToFiber functions

AP 9/01

Thread-related Data Structures

• Executive thread block
(ETHREAD) – in NT kernel

• Thread block for every Win32
process – in CSRSS

• W32THREAD-struct. for
threads that called Win32
subsyst. – in WIN32K.SYS

EPROCESS

Access token

Pending I/O requests

KTHREAD block

Create and exit times

Process ID

Thread start address

Impersonation info

LPC message info

Timer info

AP 9/01

Kernel Thread Block

• Info used by NT
kernel for thread
scheduling and
synchronization

Dispatcher header
Total user time

Total kernel time

Thread-scheduling info
Trap frame

Synchronization info
List of pending APCs

Timer block and wait block
List of objects thread is waiting on

Dispatcher header
Total user time

Total kernel time

Thread-scheduling info
Trap frame

Synchronization info
List of pending APCs

Timer block and wait block
List of objects thread is waiting on

Dispatcher header
Total user time

Total kernel time

Thread-scheduling info
Trap frame

Synchronization info
List of pending APCs

Timer block and wait block
List of objects thread is waiting on

Kernel stack info

System service table

Thread Environment Block

Thread local storage array

AP 9/01

Thread Environment Block

• User mode data
structure

• Context for image
loader and various
Win32 DLLs

Exception list
Stack base
Stack limit

Thread ID
Active RPC handle

LastError value
Count of owned crit. sect.

Current locale
User32 client info

GDI32 info
OpenGL info

TLS array

Subsyst. TIB

Fiber info

PEB

Winsock data

AP 9/01

Thread-Related System Variables

Count of registered thread
notification routines

DWORDPspCreateThread-
NotifyRoutineCount

Pointers to routines to be called
on thread creation and deletion
(max. 8)

Array of 32-bit
pointers

PspCreateThread-
NotifyRoutine

DescriptionTypeVariable

AP 9/01

Thread-Related Performance
Counters

Base priority of process: starting priority for
thread within process

Process: Priority Base

Thread ID – re-usedThread: ID Thread

PID – process IDs are re-usedThread: ID Process

Total lifetime of process in secondsThread: ElapsedTime

Percentage of time that the thread has run in
user mode

Thread:%UserTime

Percentage of CPU time that the threads has
used during specified interval

%PrivilegedTime + %UserTime

Thread:%ProcessorTime

Percentage of time that the thread was run in
kernel mode

Thread:%PrivilegedTime

FunctionObject: Counter

AP 9/01

Thread-Related Performance
Counters (contd.)

Base priority of thread: may differ from the
thread‘s starting priority

Thread: Priority Base

Value from 0 through 19 – reason why the
thread is in wait state

Thread: Thread Wait
Reason

Value from 0 through 7 – current state of
thread

Thread: Thread State

The thread‘s starting virtual address (the same
for most threads)

Thread: Start Address

The thread‘s current dynamic priorityThread: Priority Current

FunctionObject: Counter

AP 9/01

Thread-Related Functions

Returns another thread‘s descriptor table entry
(only on X86 systems)

GetThreadSelectorEntry

Returns or changes a thread‘s CPU registersGet/SetThreadContext

Returns another thread‘s timing informationGetThreadTimes

Gets another thread‘s exit codeGetExitCodeThread

Terminates a threadTerminateThread

Ends execution of a thread normallyExitThread

Creates thread in another processCreateRemoteThread

Create new threadCreateThread

DescriptionFunction

AP 9/01

Thread Startup
(in-context thread init.)

Lower IRQL
to APC

Enable working
set expansion

Queue user-mode
APC to run

LdrInitializeThunk
And lower IRQL to 0

Perform in-process
context initialization

(init loader, load DLLs)

Process
has

debugger?
Suspend all

threads

Send new thread
message to
subsystem

Suspend all
threads

Notify debugger
process of new

process and wait
for replyRestore trap

frame and dismiss
exception

Begin execution in
user mode

LPC send/
receive

APC fires

yes

no

User mode

Inside CSRSS

Kernel mode

Kernel mode

