Unit 3: Processes and Threads

3.3. Windows 2000 Process and Thread Internals

AP 9/01

Windows 2000 Process and Thread

Internals
Process
Data Structures for each | environment |
process/thread block
° I Thread
Executive process block ervironment
(EPROCESS) block
. _Procesy address space A_
 Executive thread block System address space
Process
(ETHREAD) block || Win32 process block
* Win32 process block (EPPROC
_ ESS) [* Handle table
* Process environment block |
° I Thread block
Thread environment block — (EPPROCESS) >

AP 9/01

Structure of Executive Process Block

Kernel process block (or PCB)

Process ID
Parent process |ID
Exit Status
Create and exit times
PsActiveProcessHead —> Next process block — | EPROCESS —
Quota block

Memory management information

Exception port

Debugger port

»| Primary access token

, g Handle table
Process environment block

Image filename
Image base address

Process priority class

> Win32 process block

AP 9/01

Key substructure:
Kernel process block

Sometimes called PCB — process control block

Dispatcher header

» Process page directory

Kernel time
User time
Inswap/Outswap list entry

» KTHREAD

Process spinlock
Processor affinity
Resident kernel stack count
Process base priority
Default thread quantum
Process state
Thread seed
Disable boost flag

AP 9/01

Key substructure:

Process Environment Block

* Always mapped
at address
Ox7FFDFO0O00

(user space)

* Image loader,
heap manager,
Win32 system
DLLs use this
info

Image base address

Module list

Thread-local storage data

Code page data

Critical section time-out

Number of heaps

Heap size info

GDI shared handle table

Process
heap

OS version no info

Image version info

Image process affinity mask

AP 9/01

Process-Related System Variables

Variable Type Description
PsActiveProcessHead Queue header List head of process blocks
PsldleProcess EPROCESS |dle process block
PsinitialSystemProcess | Pointer to Pointer to process block of
EPROCESS initial system process (PID 2)

that contains system threads

PspCreateProcess- Array of 32-bit Pointers to routines to be called
NotifyRoutine pointers on process creation and
deletion (max. 8)
PspCreateProcess- DWORD Count of registered process
NotifyRoutineCount notification routines
PspCidTable Pointer to Handle table for process and

HANDLE_TABLE

thread client IDs

AP 9/01

Process-Related Performance

Counters
Object: Counter Function
Process:%PrivilegedTime Percentage of time that the threads in the

process have run in kernel mode

Process:%ProcessorTime Percentage of CPU time that threads have
used during specified interval

%PrivilegedTime + %UserTime

Process:%UserTime Percentage of time that the threads in the
process have run in user mode

Process: ElapsedTime Total lifetime of process in seconds
Process: ID Process PID — process IDs are re-used
Process: ThreadCount Number of threads in a process

AP 9/01

Process-Related Functions

Function Description

CreateProcess Create new proc.& thread; using callers security ID
CreateProcess- Creates new proc.&thread using alternate security ID
AsUser and then executes specified .EXE

OpenProcess Returns a handle of specified process object
ExitProcess Exits current process

TerminateProcess

Terminates a process

Flushlnstruction-
Cache

Empties another process's instruction cache

GetProcessTimes

Obtains another process's timing info (%user/%kernel)

GetExitCodeProcess

Returns exit code for another process, indicating how
and why process was shut down

AP 9/01

Process-Related Functions (contd.)

Function

Description

GetCommandLine

Returns command-line string passed to the process

GetCurrentProcessID

Returns ID of current process

GetProcessVersion

Returns major/minor versions of Windows version on
which the specified process expects to run

GetStartuplinfo

Returns contents of STARTUPINFO structure
specified during CreateProcess

GetEnvironment-
Strings

Returns address of environment block

GetEnvironment-

Returns a specific environment variable

Variable
Get/SetProcess- Defines shutdown priority and number of retries for
ShutdownParameters | current process

AP 9/01

Flow of CreateProcess

. Open the image file (.EXE) to be executed inside the
process

. Create Windows NT executive process object

. Create initial thread (stack, context, Win NT executive
thread object)

. Notify Win32 subsystem of new process so that it can
set up for new proc.& thread

. Start execution of initial thread (unless
CREATE_SUSPENDED was specified)

. In context of new process/thread: complete
initialization of address space (load DLLs) and begin
execution of the program

AP 9/01

The main Stages NT follows
to create a process

Open EXE and
create selection
object

v

Create NT
process object

v

Create NT
thread object

v

Notify Win32
subsystem

Creating process

Win32 subsystem

Set up for new New process
»| process and

Start execution
of the initial
thread

thread Fine}I
process/image

»| Initialization

v

v

Return to caller

Start execution
at entry point to
image

AP 9/01

CreateProcess: some notes

CreationFlags: independent bits for priority class
-> NT assigns lowest-prio class set

Default prio class is normal Prios _
, _ riority classes:

unless creator has prio class idle . Real-time

If real-time prio class is specified and * High

creator has insufficient privileges: i':j‘f;ma'

prio class high is used

Caller's current desktop is used
If no desktop is specified

AP 9/01

Opening the image to be executed

Run CMD.EXE Run NTVDM.EXE Use .EXE directly
MS-DOS .BAT Win16 Win32
or .CMD

0S/2 1.x POSIX MS-DOS .EXE,

.COM, or .PIF
/ N
v

Run OS2.EXE Run POSIX.EXE Run NTVDM.EXE

AP 9/01

If executable has no Win32 format...

« CreateProcess uses Win32 ,support image”

* No way to create non-Win32 processes directly
— OS2.EXE runs only on Intel systems
— Multiple MS-DOS apps may share virtual dos machine
— .BAT of .CMD files are interpreted by CMD.EXE

— Win16 apps may share virtual dos machine (VDM)
Flags: CREATE_SEPARATE_WOW_VDM
CREATE_SHARED WOW_VDM
Default: HKLM\System...\ControA\WOW\DefaultSeparateVDM

— Sharing of VDM only if apps run on same desktop under same security

« Debugger may be specified under (run instead of app !!)
\Software\Microsoft\WindowsNT\CurrentVersion\ImageFileExecutionOptions

AP 9/01

Process Creation - next Steps...

* CreateProcess has opened Win32 executable and
created a section object to map in proc's addr space

Now: create executive proc obj via NtCreateProcess

— Set up EPROCESS block

— Create initial process address space (page directory, hyperspace
page, working set list)

— Create kernel process block (set inital quantum)

— Conlude setup of process address space (VM, map NTDLL.DLL, map
lang support tables, register process: PsActiveProcessHead)

— Set up Process Environment Block
— Complete setup of executive process object

AP 9/01

Further Steps...(contd.)

* Create Initial Thread and Its Stack and Context
— NtCreateThread; new thread is suspended until CreateProcess returns

* Notify Win32 Subsystem about new process
KERNEL32.DLL sends message to Win32 subsystem including:
— Process and thread handles
— Entries in creation flags
— ID of process's creator
— Flag describing Win32 app (CSRSS may show startup cursor)

* WIin32: duplicate handles (inc usage count), set prio class, bookkeeping
— allocate CSRSS proc/thread block, init exception port, init debug port

— Show cursor (arrow & hourglass), wait 2 sec for GUI call, then wait 5
sec for window

AP 9/01

CreateProcess: final steps

Process Initialization in context of new process:

« Lower IRQL level (dispatch -> Async.Proc.Call. level)
Enable working set expansion

Queue APC to exec LdrinitializeThunk in NTDLL.DLL
Lower IRQL level to O — APC fires,

— Init loader, heap manager, NLS tables, TLS array, crit. sect. Structures
— Load DLLs, call DLL_ PROCESS_ATTACH func

Debuggee: all threads are suspended

— Send msg to proc’s debug port
(Win32 creates CREATE _PROCESS DEBUG INFO event)

Image begins execution in user-mode (return from trap)

AP 9/01

Thread Internals
Fibers vs. Threads

NT Threads are scheduled by the kernel
Kernel mode/user mode threads

Many Unix thread implementations are user-space

NT 3.51/SP3 has introduced Fibers (lightweight threads)

— Simplify porting of multithreaded Unix apps
— Programmer schedules Fibers manually (co-operative)
— Fibers are not scheduled by the system
ConvertThreadToFiber
CreateFiber, SwitchToFiber functions

AP 9/01

Thread-related Data Structures

« Executive thread block KTHREAD block

(ETHREAD) — in NT kernel

« Thread block for every Win32
process — in CSRSS

Create and exit times

Process ID

EPROCESS [«

Thread start address

Access token [¢

« W32THREAD-struct. for Impersonation info
threads that called Win32 LPC message info
subsyst. —in WIN32K.SYS Timer info

Pending I/O requests [¢

AP 9/01

Kernel Thread Block

* Info used by NT |
kernel for thread Dispatcher header
Total user time

schedulm_g a,nd Total kernel time
synchronization

Kernel stack info — Thread-scheduling info

System service table f/ Trap frame
o Synchronization info
Thread local storage array List of pending APCs

Timer block and wait block
List of objects thread is waiting on

Thread Environment Block [<

AP 9/01

Thread Environment Block

User mode data
structure

Context for image
loader and various
Win32 DLLs

Exception list

Stack base
Stack limit
» Subsyst. TIB
» Fiber info
Thread ID
Active RPC handle
> PEB

LastError value

Count of owned crit. sect.

Current locale

User32 client info

GDI32 info

OpenGL info

TLS array

>

Winsock data

AP 9/01

Thread-Related System Variables

Variable Type Description

PspCreateThread- Array of 32-bit Pointers to routines to be called

NotifyRoutine pointers on thread creation and deletion
(max. 8)

PspCreateThread- DWORD Count of registered thread

NotifyRoutineCount notification routines

AP 9/01

Thread-Related Performance

Counters
Object: Counter Function
Process: Priority Base Base priority of process: starting priority for
thread within process
Thread:%PrivilegedTime Percentage of time that the thread was run in
kernel mode
Thread:%ProcessorTime Percentage of CPU time that the threads has

used during specified interval
%PrivilegedTime + %UserTime

Thread:%UserTime Percentage of time that the thread has run in
user mode

Thread: ElapsedTime Total lifetime of process in seconds

Thread: ID Process PID — process IDs are re-used

Thread: ID Thread Thread ID — re-used

AP 9/01

Thread-Related Performance
Counters (contd.)

Object: Counter Function

Thread: Priority Base Base priority of thread: may differ from the
thread's starting priority

Thread: Priority Current The thread's current dynamic priority

Thread: Start Address The thread's starting virtual address (the same
for most threads)

Thread: Thread State Value from 0 through 7 — current state of
thread

Thread: Thread Wait Value from 0 through 19 — reason why the

Reason thread is in wait state

AP 9/01

Thread-Related Functions

Function Description

CreateThread Create new thread

CreateRemoteThread Creates thread in another process

ExitThread Ends execution of a thread normally

TerminateThread Terminates a thread

GetExitCodeThread Gets another thread's exit code

GetThreadTimes Returns another thread's timing information

Get/SetThreadContext Returns or changes a thread’'s CPU registers

GetThreadSelectorEntry | Returns another thread's descriptor table entry
(only on X86 systems)

AP 9/01

Kernel mode

Lower IRQL
to APC

v

Enable working
set expansion

v

Queue user-mode
APC to run
Ldrinitialize Thunk
And lower IRQL to 0

Thread Startup

(in-context thread init.)

APC fires

User mode

Perform in-process
context initialization

Kernel mode

(init loader, load DLLs)

Suspend all

Restore trap
frame and dismiss
exception

v

Begin execution in

user mode

threads

A 4

Send new thread
message to
subsystem

Suspend all
threads

Inside CSRSS

Notify debugger

LPC send/ | process ofdnew.t
eceive process and wali

for reply

AP 9/01

