
AP 9/01

Unit 15:
Experimental Microkernel Systems

15.3. Comparison of Amoeba, Mach, and Chorus

AP 9/01

Philosophy – Computer vs. Cluster

• Amoeba:
– Based on processor pool model

– User logs into the system as a whole

– OS decides where to run commands based on load

– Optimized for remote case (fast RPC)

• Mach and Chorus:
– User logs into a specific machine

– No attempt to spread each user‘s work over machines

– Each user has a home machine - but Mach was ported to the Intel
Paragon multiprocessor, consisting of a pool of processors

– Optimized for local case (copy-on-write in Mach
memory management)

AP 9/01

Philosophy - Microkernel

• Amoeba:
– Perfection is not achieved when there is nothing left to add, but when

there is nothing left to take away (Atoine de St. Exupéry)

– Minimal kernel, most code in user-space servers

• Mach:
– Provide enough kernel functionality to handle wide range of apps.

– 4.2BSD UNIX compatibility

– Large kernel, five times more system calls than Amoeba

• Chorus
– Smaller than Mach kernel

– Still more system calls than 4.2BSD UNIX

AP 9/01

Objects and Capabilities

• Amoeba:
– Objects are the central concept

– Few are built-in, most are user defined (e.g. Files)

– About a dozen generic operations on objects

– Capabilities managed in user-space; for system/user-defined objects

• Mach:
– OS objects:

– Capabilities only for ports; not for processes/other system objects

• Chorus:
– Built-in OS objects: threads, processes, ports, memory segments

– Subsystems may define new protected objects

– Capabilities for all objects; no encryption of right fields

AP 9/01

Processes and Threads

• All systems support processes with multiple threads

• Amoeba and Chorus:
– Thread synchronization by mutexes and semaphores

– No primitives for assigning threads to processors

– Automatic load balancing in processor pools (Amoeba)

• Mach:
– Thread synchronization by mutexes and condition variables

– Programmer may manage thread-to-processor assignment

– Load balancing only on multiprocessor systems

AP 9/01

Memory Model

• Amoeba:
– Variable-length segments, no paging
– Segments are controlled by capabilities
– Shared objects of any size (impl. based on reliable broadcast protocol)

• Mach:
– Memory objects, fixed-size pages
– Page fault handling by external user-space memory managers (OS

supplies default memory manager)
– Copy-on-write page sharing (optimization for multiprocessor systems)

• Chorus:
– Memory objects (regions)
– Demand paging under control of an external pager (Mapper)

AP 9/01

Communication

• Amoeba:
– RPC (simple interface) and group communication

– Put-ports represent service addresses

– Ports are cryptographically protected (via one-way functions)

• Mach:
– RPC communication, mapped onto memory manag. for local ops.

– Remote communication handled by user-space server (netmsgserver)

– No group communication or reliable broadcasting as kernel primitives

• Chorus:
– Messages are directed to ports; similar to Mach

– RPC or asynchronous communication

– All communication implemented inside the kernel

AP 9/01

Servers

• Amoeba:
– Variety of servers for specific functions
– File/directory management, object replication, load balancing
– All servers are based on objects and capabilities
– UNIX emulation provided at source code level

• Mach:
– Single server runs BSD UNIX as an application program
– 100 percent binary-compatible emulation

• Chorus:
– Full binary compatibility with System V UNIX
– Emulation implemented by collection of processes (like Amoeba)
– Native servers designed from scratch; distributed computing in mind

