
AP 9/01

Unit 14: The Mach Operating System

14.2. Threads and Scheduling in Mach

AP 9/01

Threads

• Active entities in Mach are threads
• Mach threads are managed by the kernel
• The C-Threads package provides a simpler interface to

kernel threads
– Several variants of mapping C-threads onto kernel threads

taskC-thread

kernel-thread

AP 9/01

Mach C-Thread Functions

• Mach provides a set of low-level functions for manipulating threads
of control.

• The C-thread run-time library provides an interface to the Mach
facilities.

• The constructs provided in the C-thread functions are:
– Forking and joining of threads

– Protection of critical regions with mutual exclusion (mutex) variables

– Condition variables for synchronization of threads

• C-thread functions should be used for multithreaded applications.

• Mach thread functions are designed to provide the low-level
mechanisms.

AP 9/01

C-thread Operations

Returns the calling thread‘s identity to itSelf()

Gives up the CPU voluntarilyYield()

Announces that the thread will never be jointed
(waited for)

Detach()

Suspends the caller until a specified thread exitsJoin()

Terminates the calling threadExit()

Creates a new thread running the same code as
the parent thread

Fork()

DescriptionCall

AP 9/01

Using External Functions and Methods
(on the Mach-based NeXTSTEP OS)

• Many of the functions and methods provided by NeXTSTEP (Mach)
weren't designed with multithreaded applications in mind.
– they might not work correctly when called simultaneously.

• The following are thread-safe:
– Distributed Objects (NeXTSTEP)

– Mach functions (except for mach_error())

– UNIX system calls (use cthread_errno() instead of errno)

– NeXTSTEP exception handling (for example, NX_RAISE())

– malloc() and its related functions,

– thread safety can be disabled by calling malloc_singlethreaded()

• The Objective C runtime system is not thread-safe by default.
– To make it thread-safe, use the function objc_setMultithreaded().

AP 9/01

Threads and System Calls (contd.)

• The following are not thread-safe:
– The Application Kit (messages to kit objects should be sent only from

the main thread)

– DPS (Display Postscript) client routines

– The Window Server (drawing should be done only from the main
thread)

– Standard I/O functions, such as printf()

– Most of the functions in the libc library

• usleep() should never be used in multithreaded
programs.
– alternatively use thread_switch():

– thread_switch(THREAD_NULL, SWITCH_OPTION_WAIT, msecs);

AP 9/01

Threads and Shared Data

• Global and static variables are shared among all threads:
– If one thread modifies such a variable, all other threads will observe the new

value.
– A variable reachable from a pointer is shared.
– This includes arguments passed by reference in cthread_fork().

• Declare all shared variables as volatile, or the optimizer might
remove references to them!

• When pointers are shared, some care is required to avoid
problems with dangling references.
– lifetime of the object pointed to must allow other threads to dereference the

pointer.
– no bound on the relative execution speed of threads
– share pointers to global or heap-allocated objects only.

• Libraries might make unprotected use of shared data.
– use a mutex that's locked before every library call

AP 9/01

The Synchronization Problem

AP 9/01

Synchronization of Variables

• Mutual exclusion and synchronization functions constrain
interleaving of the execution threads.

typedef struct mutex {...} *mutex_t;

typedef struct condition {...} *condition_t;

• Mutually exclusive access to mutable data is necessary to prevent
corruption of data.

mutex_lock(m);

count += 1;

mutex_unlock(m);

• Any other thread will block when it tries to lock the mutex in the
meantime.

• If more than one thread tries to lock the mutex at the same time,
only one succeeds.

AP 9/01

Synchronization (contd.)

• Condition variables allow one thread to wait until another thread
signals an event.

• Every condition variable should be protected by a mutex.
mutex_lock(mutex_t m);

. . .

while (/* condition isn't true */)

 condition_wait(condition_t c, mutex_t m);

. . .

mutex_unlock(mutex_t m);

AP 9/01

Synchronization (contd.)

• condition_wait() temporarily unlocks the mutex
– gives other threads a chance to get in and modify the shared data.

– Eventually, one of them signals the condition before it unlocks the
mutex:

mutex_lock(mutex_t m);

. . . /* modify shared data */

condition_signal(condition_t c);

mutex_unlock(mutex_t m);

• Then, the original thread will regain its lock and can
access the shared data again.

AP 9/01

Synchronization pitfalls

• Attempting to lock a mutex that one already holds is a
common error.
– The offending thread will block waiting for itself.

• What kind of granularity to use in protecting shared
data with mutexes?
– one mutex protecting all shared memory
– one mutex for every byte of shared memory.

• Finer granularity normally increases the possible
parallelism.

• It also increases the overhead lost to locking and
unlocking mutexes.

AP 9/01

Mach Scheduling

• Each thread has a scheduling priority and policy.
– Priority is a number between 0 and 31

– indicates how likely the thread is to run.

• The higher the priority, the more likely a thread is to run.

• Timesharing policy is default
– whenever the running thread blocks or after a certain amount of time -

– the highest-priority runnable thread is executed.

• A thread's priority gets lower as it runs (it ages)
– not even a high-priority thread can keep a low-priority thread from

eventually running.

AP 9/01

Preemptive vs. Non-preemptive Kernel

AP 9/01

Mach Scheduling (contd.)

• Heavily influenced by its goal of running on
multiprocessors
– CPUs in a multiprocessor can be assigned to processor sets

– Each CPU belongs to exactly one processor set

– Threads can also be assigned to processor sets and may be
scheduled on any CPU belonging to a processor set

• Scheduling algorithm assigns threads to CPUs
– Fairness and efficiency are optimization criteria

– Priority-driven, decreasing priority preemptive scheduling with
processor usage aging

– Global run queues for each processor set

– Local run queues for each processor (to allow attaching a thread to a
particular processor during system calls)

AP 9/01

Global Run Queues

(High) 0
Priority

Priority
(Low) 31

Thread on
queue 2

Thread on
queue 20

Count: 6
Hint: 2

Processor set 0

0

31

Count: 5
Hint: 3

Processor set 1

AP 9/01

Priorities

• Each thread has three types of priorities associated with it:
– base priority,

– current priority,

– maximum priority.

• Base priority is the one the thread starts with; it can be set using
cthread_priority().

• Current priority is the one at which the thread is executing;
– may be lower than the base priority due to aging or a call to thread_switch().

• Maximum priority is the highest priority at which the thread can
execute.
– a thread inherits its base priority from its parent task,

– its maximum priority is set to a system-defined maximum.

AP 9/01

Priorities (contd.)

• Priorities can be set at three levels:
– the thread,

– the task,

– the processor set (on multiprocessors).

• At the thread level:
– cthread_priority() , thread_priority() - set base priority, lower maximum

priority.

• Raising or lowering just the maximum priority:
– cthread_max_priority(), thread_max_priority().

AP 9/01

Priorities (contd.)

• To raise a thread's maximum priority:
– the privileged port of the thread's processor set must be obtained,

– only the superuser can do this.

• At the task level:
– task_priority() sets the task's base priority.

– inherited by all threads that it forks;

– optionally all existing threads in the task can get the new base priority.

AP 9/01

Policies

• The NeXT Mach operating system has three scheduling policies:
– Timesharing

– Interactive

– Fixed priority

• Every thread starts with the timesharing policy, no matter what
policy the creator of the thread has.

• Policies other than timesharing can be set using thread_policy().

• The interactive policy is a variant of timesharing;
– designed to be optimized for interactive applications.

– a non-NEXTSTEP application should be set to interactive policy.

– Currently, the interactive policy is exactly the same as timesharing).

– performance might be enhanced by making interactive policy threads have
higher priorities than the other threads in the task.

AP 9/01

Fixed Priority Scheduling

• No descreasing priorities, no aging

• Fixed priority can be a dangerous policy if you aren't familiar with
all of its consequences.
– fixed-priority policy is disabled by default.

– must be enabled using processor_set_policy_enable().

• Threads that have the fixed-priority policy have their current priority
always equal to their base priority
(unless their priority is depressed by thread_switch()).

• A thread with the fixed-priority policy runs until one of the following
happens:
– A higher-priority process becomes available to run.

– A per-thread, user-specified amount of time (the quantum) passes.

– The thread blocks, waiting for some event or system resource.

AP 9/01

Fixed Priority Scheduling Problems

• Fixed-priority threads can prevent lower-priority threads
from running.

• The opposite can happen, too;
– a low-priority, fixed-priority thread can be kept from running by higher-

priority threads.

• The first problem can be solved by a call to
thread_switch()
– to temporarily depress priority

– hand off the processor to another thread.

• The fixed-priority policy is often used for real-time
problems.

