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Netfilter API

• Linux API for packet filtering, NAT, mangling
• can be used to apply filters at different stages of packet traversal
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Filter in user space

• kernel module often impractical
• difficult to develop, debug
• normal userland libraries (e.g. for 

Layer 7 Interpretation) can‘t be 
used

• Move filter to user space?
• call user space function from 

kernel space (Upcall)
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Communication with Unix Domain Sockets

• used for inter-process 
communication

• can use filesystem as address 
space

• socket can be bound to a file

• connection based, full-duplex
• in this case: preserves user/kernel 

space separation, memory is not 
shared

01 unsigned int hook_func(void *priv, 
02                 struct sk_buff *skb, 
03       const struct nf_hook_state *state) {
04
05     unsigned char ans[sizeof(unsigned int)];
06    
07     sck_h->send_msg(sck_h, skb->data, skb->data_len);
08
09     if (sck_h->state == Error_Send) {
10         // Error handling (client disconnected)
11         return NF_ACCEPT;
12     }
13
14     sck_h->recv_msg(sck_h, ans, sizeof(unsigned int));
15
16     if (sck_h->state == Error_Recv) {
17         // Error handling (client disconnected)
18         return NF_ACCEPT;
19     }
20
21     return *((unsgined int *) ans);
22 }



Why this doesn‘t work...

• netfilter hook is called in critical 
section

• the kernel thread can‘t be 
scheduled

• socket IO is async, we need to 
wait for the answer

•                    call leads to kernel 
panic as scheduler is confused

01 unsigned int hook_func(void *priv, 
02                 struct sk_buff *skb, 
03       const struct nf_hook_state *state) {
04
05     unsigned char ans[sizeof(unsigned int)];
06    
07     sck_h->send_msg(sck_h, skb->data, skb->data_len);
08
09     if (sck_h->state == Error_Send) {
10         // Error handling (client disconnected)
11         return NF_ACCEPT;
12     }
13
14     sck_h->recv_msg(sck_h, ans, sizeof(unsigned int));
15
16     if (sck_h->state == Error_Recv) {
17         // Error handling (client disconnected)
18         return NF_ACCEPT;
19     }
20
21     return *((unsgined int *) ans);
22 }

recv_msg



New Idea

• send packet to filter process, then drop it
• when the verdict is ready, reintroduce packet to netfilter

• Netfilter is already capable of this, there is even a userland library that implements 
socket communication to filter from user space



What‘s next?

• implement a filter in user space
• how big is the performance impact?

• different architecture: use Unix pipes to propagate 
packet/verdict through user space

user space

kernel space
readable 
interface

writable 
interface

filter 
program

filter 
program

filter 
program

pipes


