
Deep Packet Inspection
Leonard Seibold

Netfilter API

• Linux API for packet filtering, NAT, mangling
• can be used to apply filters at different stages of packet traversal

network
device

processes

network
devicerouting routing

filter

filter

filter

filter filter

user space

kernel space

Filter in user space

• kernel module often impractical
• difficult to develop, debug
• normal userland libraries (e.g. for

Layer 7 Interpretation) can‘t be
used

• Move filter to user space?
• call user space function from

kernel space (Upcall)

filter
process

filter

user space

kernel space
packet verdict

... ...

Communication with Unix Domain Sockets

• used for inter-process
communication

• can use filesystem as address
space

• socket can be bound to a file

• connection based, full-duplex
• in this case: preserves user/kernel

space separation, memory is not
shared

01 unsigned int hook_func(void *priv,
02 struct sk_buff *skb,
03 const struct nf_hook_state *state) {
04
05 unsigned char ans[sizeof(unsigned int)];
06
07 sck_h->send_msg(sck_h, skb->data, skb->data_len);
08
09 if (sck_h->state == Error_Send) {
10 // Error handling (client disconnected)
11 return NF_ACCEPT;
12 }
13
14 sck_h->recv_msg(sck_h, ans, sizeof(unsigned int));
15
16 if (sck_h->state == Error_Recv) {
17 // Error handling (client disconnected)
18 return NF_ACCEPT;
19 }
20
21 return *((unsgined int *) ans);
22 }

Why this doesn‘t work...

• netfilter hook is called in critical
section

• the kernel thread can‘t be
scheduled

• socket IO is async, we need to
wait for the answer

• call leads to kernel
panic as scheduler is confused

01 unsigned int hook_func(void *priv,
02 struct sk_buff *skb,
03 const struct nf_hook_state *state) {
04
05 unsigned char ans[sizeof(unsigned int)];
06
07 sck_h->send_msg(sck_h, skb->data, skb->data_len);
08
09 if (sck_h->state == Error_Send) {
10 // Error handling (client disconnected)
11 return NF_ACCEPT;
12 }
13
14 sck_h->recv_msg(sck_h, ans, sizeof(unsigned int));
15
16 if (sck_h->state == Error_Recv) {
17 // Error handling (client disconnected)
18 return NF_ACCEPT;
19 }
20
21 return *((unsgined int *) ans);
22 }

recv_msg

New Idea

• send packet to filter process, then drop it
• when the verdict is ready, reintroduce packet to netfilter

• Netfilter is already capable of this, there is even a userland library that implements
socket communication to filter from user space

What‘s next?

• implement a filter in user space
• how big is the performance impact?

• different architecture: use Unix pipes to propagate
packet/verdict through user space

user space

kernel space
readable
interface

writable
interface

filter
program

filter
program

filter
program

pipes

