Deep Packet Inspection

Leonard Seibold

Netfilter API

 Linux API for packet filtering, NAT, mangling
e can be used to apply filters at different stages of packet traversal

user space

/ processes —\
[Vv

kernel space

filter filter
n:;aggk —> filter > routing ———> filter ——> routing > filter 5 hetwork

device

Filter in user space

e kernel module often impractical
o difficult to develop, debug

e normal userland libraries (e.g. for
Layer 7 Interpretation) can't be
used

* Move filter to user space?

* call user space function from
kernel space (Upcall)

user space

filter

process

N

kernel space

packet verdict

filter

\

4

Communication with Unix Domain Sockets

 used for inter-process
communication

e can use filesystem as address
space
e socket can be bound to a file

e connection based, full-duplex

* in this case: preserves user/kernel
space separation, memory is not
shared

unsigned int hook_func(void *priv,

struct sk_buff *skb,
const struct nf_hook_state *state) {

unsigned char ans[sizeof(unsigned int)];
sck_h->send_msg(sck_h, skb->data, skb->data_len);
if (sck_h->state == Error_Send) {

// Error handling (client disconnected)

return NF_ACCEPT;
}

sck_h->recv_msg(sck_h, ans, sizeof(unsigned int));
if (sck_h->state == Error_Recv) {
// Error handling (client disconnected)

return NF_ACCEPT;
}

return *((unsgined int *) ans);

Why this doesn‘t work...

* netfilter hook is called in critical unsigned int hook_func(void *priv,
i struct sk_buff *skb,
section const struct nf_hook_state *state) {
 the kernel thread can‘t be

unsigned char ans[sizeof(unsigned int)];

scheduled
sck_h->send_msg(sck_h, skb->data, skb->data_len);

socket 10 is async, we need to _
if (sck_h->state == Error_Send) {

wait for the answer // Error handling (client disconnected)

return NF_ACCEPT;
e recv_msg call leads to kernel }
DTS A B EallfEr (5 Cenireee SEL I AIEEY IEGREES 1, 208, srsaei(ey W) 7
if (sck_h->state == Error_Recv) {

// Error handling (client disconnected)

return NF_ACCEPT;
}

return *((unsgined int *) ans);

New Idea

* send packet to filter process, then drop it
e when the verdict is ready, reintroduce packet to netfilter

 Netfilter is already capable of this, there is even a userland library that implements
socket communication to filter from user space

What's next?

e implement a filter in user space
* how big is the performance impact?

e different architecture: use Unix pipes to propagate
packet/verdict through user space

user space

filter filter filter

‘ program K program j program ‘

pipes

(CELEL writable
interface interface

kernel space

