
AP 9/01

Unit 15:
Experimental Microkernel Systems

15.3. Comparison of Amoeba, Mach, and Chorus

AP 9/01

Philosophy – Computer vs. Cluster

•  Amoeba:
–  Based on processor pool model
–  User logs into the system as a whole
–  OS decides where to run commands based on load
–  Optimized for remote case (fast RPC)

•  Mach and Chorus:
–  User logs into a specific machine
–  No attempt to spread each user‘s work over machines
–  Each user has a home machine - but Mach was ported to the Intel

Paragon multiprocessor, consisting of a pool of processors
–  Optimized for local case (copy-on-write in Mach

memory management)

AP 9/01

Philosophy - Microkernel

•  Amoeba:
–  Perfection is not achieved when there is nothing left to add, but when

there is nothing left to take away (Atoine de St. Exupéry)
–  Minimal kernel, most code in user-space servers

•  Mach:
–  Provide enough kernel functionality to handle wide range of apps.
–  4.2BSD UNIX compatibility
–  Large kernel, five times more system calls than Amoeba

•  Chorus
–  Smaller than Mach kernel
–  Still more system calls than 4.2BSD UNIX

AP 9/01

Objects and Capabilities

•  Amoeba:
–  Objects are the central concept
–  Few are built-in, most are user defined (e.g. Files)
–  About a dozen generic operations on objects
–  Capabilities managed in user-space; for system/user-defined objects

•  Mach:
–  OS objects:
–  Capabilities only for ports; not for processes/other system objects

•  Chorus:
–  Built-in OS objects: threads, processes, ports, memory segments
–  Subsystems may define new protected objects
–  Capabilities for all objects; no encryption of right fields

AP 9/01

Processes and Threads

•  All systems support processes with multiple threads
•  Amoeba and Chorus:

–  Thread synchronization by mutexes and semaphores
–  No primitives for assigning threads to processors
–  Automatic load balancing in processor pools (Amoeba)

•  Mach:
–  Thread synchronization by mutexes and condition variables
–  Programmer may manage thread-to-processor assignment
–  Load balancing only on multiprocessor systems

AP 9/01

Memory Model

•  Amoeba:
–  Variable-length segments, no paging
–  Segments are controlled by capabilities
–  Shared objects of any size (impl. based on reliable broadcast protocol)

•  Mach:
–  Memory objects, fixed-size pages
–  Page fault handling by external user-space memory managers (OS

supplies default memory manager)
–  Copy-on-write page sharing (optimization for multiprocessor systems)

•  Chorus:
–  Memory objects (regions)
–  Demand paging under control of an external pager (Mapper)

AP 9/01

Communication

•  Amoeba:
–  RPC (simple interface) and group communication
–  Put-ports represent service addresses
–  Ports are cryptographically protected (via one-way functions)

•  Mach:
–  RPC communication, mapped onto memory manag. for local ops.
–  Remote communication handled by user-space server (netmsgserver)
–  No group communication or reliable broadcasting as kernel primitives

•  Chorus:
–  Messages are directed to ports; similar to Mach
–  RPC or asynchronous communication
–  All communication implemented inside the kernel

AP 9/01

Servers

•  Amoeba:
–  Variety of servers for specific functions
–  File/directory management, object replication, load balancing
–  All servers are based on objects and capabilities
–  UNIX emulation provided at source code level

•  Mach:
–  Single server runs BSD UNIX as an application program
–  100 percent binary-compatible emulation

•  Chorus:
–  Full binary compatibility with System V UNIX
–  Emulation implemented by collection of processes (like Amoeba)
–  Native servers designed from scratch; distributed computing in mind

