
AP 9/01

Unit 15:
Experimental Microkernel Systems

15.1. The Amoeba Distributed Operating System

AP 9/01

The Amoeba
Distributed Operating System

•  Research vehicle for distributed
and parallel operating systems,
runtime systems, languages, and
applications.

•  Developed at Vrije Universiteit,
Amsterdam
–  (A.S. Tanenbaum, F. Kaashoek, S.J.

Mullender, R.v. Renesse)
–  www.cs.vu.nl/pub/amoeba/amoeba.html

80 processor Amoeba Sparc Cluster at
Vrije Universiteit

AP 9/01

Research Goals

•  Transparent distributed operating system
•  UNIX look and feel to the user
•  Actions make use of multiple machines

distributed over the network
–  Process servers
–  File servers
–  Directory servers
–  Compute servers

•  No home machine; machines do not have owners
•  Load balancing, processor pools

AP 9/01

Amoeba System Architecture

Two basic assumptions:
1.  Systems will have a very large number of CPUs
2.  Each CPU will have tens of Mbyts of memory

AP 9/01

Amoeba Architecture (1)

•  The Amoeba architecture consists of four principal
components

•  First are the workstations, one per user, on which users
can carry out editing and other tasks that require fast
interactive response.

•  Workstations are all diskless, and are primarily used as
intelligent terminals that do window management.
–  Sun3’s and VAXstations have been used as workstations, as well as
–  X-terminals.

AP 9/01

Amoeba Architecture (2)

•  Second are the pool processors, a group of CPUs that
can be dynamically allocated as needed, used, and
then returned to the pool.
–  The make command might need to do six compilations, so six

processors could be taken out of the pool for the time necessary to do
the compilation and then returned.

–  Alternatively, with a five-pass compiler, 5 x 6 = 30 processors could be
allocated for the six compilations, gaining even more speedup.

•  Many applications, use large numbers of pool
processors to do their computing
–  heuristic search in AI applications (e.g., playing chess),

•  Pool processors can be heterogeneous

AP 9/01

Amoeba Architecture (3)

•  Third are the specialized servers,
–  such as directory servers,
–  file servers,
–  data base servers,
–  boot servers, and various other servers with specialized functions.

•  Each server is dedicated to a specific function.
–  In some cases, there are multiple servers that provide the same

function,
–  The replicated file system is an example.

AP 9/01

Amoeba Architecture (4)

•  Gateways link Amoeba systems at different sites into a
single, uniform system.

•  Gateways isolate Amoeba from WAN-protocols
•  All the Amoeba machines run the same kernel

–  multithreaded processes,
–  communication services,
–  I/O, and little else.

•  The basic idea behind the kernel was to keep it small
–  enhance its reliability,

•  As much OS functionality as possible is provided in
user-space
–  flexibility and ease of experimentation.

AP 9/01

The Amoeba Microkernel

 The Amoeba microkernel runs on all machines in the
system. It has four primary functions:

1.  Manage processes and threads within these
processes.

2.  Provide low-level memory management support.

3.  Support transparent
communication
between arbitrary
threads.

4.  Handle I/O.

AP 9/01

Threads in Amoeba

•  Like most OS, Amoeba supports the process concept.
•  Amoeba also supports multiple threads within a single

address space.
–  A process with one thread is essentially the same as a UNIX process.
–  Such a process has a single address space, a set of registers, a

program counter, and a stack.

•  Threads are managed and scheduled by the
microkernel
–  The primary argument for making the threads known to the kernel

rather than being pure user concepts relates to our desire to have
communication be synchronous (i.e., blocking).

AP 9/01

RPC Communication

•  All RPCs are from one thread to another.
–  User-to-user, user-to-kernel, and kernel-to-kernel communication all

occur.
–  (Kernel-to-user is technically legal, but, since that constitutes an

upcall, they have been avoided except where that was not feasible).
–  When a thread blocks awaiting the reply, other threads in the same

process that are not logically blocked may be scheduled.

AP 9/01

RPC Addressing

•  Addressing is done by allowing any thread to choose a random
48bit number called a port .

–  All messages are addressed from a sending port to a destination port.
–  A port is nothing more than a kind of logical thread address.
–  There is no data structure and no storage associated with a port.

•  When an RPC is executed, the sending kernel locates the
destination port by broadcasting a special LOCATE message, to
which the destination kernel responds.

–  Once this cycle has been completed, the sender caches the port, to avoid
subsequent broadcasts.

•  The RPC mechanism makes use of three principal kernel
primitives:

–  Do_remote_op() - send a message from client to server and wait for the reply
–  Get_request() - indicates a server's willingness to listen on a port
–  Put_reply() - done by a server when it has a reply to send

AP 9/01

RPC Performance

•  All communication in Amoeba is based on RPC.
–  If the RPC is slow, everything built on it will be slow too (e.g., the file

server performance).
–  For this reason, considerable effort has been spent to optimize the

performance of the RPC between a client and server running as user
processes on different machines, as this is the normal case in a
distributed system.

AP 9/01

Group Communication in Amoeba

•  A group in Amoeba consists of one or more processes that are
cooperating to provide a service

•  Processes can be members of several groups
•  Only members can broadcast to a group (closed groups)

Call Description

CreateGroup Create a new group and set its parameters

JoinGroup Make the caller a member of a group

LeaveGroup Remove the caller from a group

SendToGroup Reliably send a message to all members of a group

ReceiveFromGroup Block until message arrives from a group

ResetGroup Initiate recovery after a process crash

AP 9/01

The Amoeba
Reliable Broadcast Protocol

•  Reliable broadcasting forms the basis for group
communication in Amoeba

Kernel Kernel Kernel S S S Sequencer disabled

Sequencer
enabled

Applications

Broadcast network

1.  User process traps to kernel, passing it the message
2.  Kernel accepts message, blocks user process
3.  Kernel sends point-to-point message to sequencer
4.  Sequencer allocates seq. number, broadcasts message with

sequence number
5.  Kernel sees message and unblocks sender

AP 9/01

Reliable Broadcast

•  Some receivers maintain a history buffer
•  Re-transmissions are requested if message with

unexpected sequence number arrives
–  Sequencer may retrieve message from history buffer
–  In case of sequencer crash, an alternative history buffer

has to be exploited

•  Leadership election protocol is employed to elect new
sequencer in case of crashed sequencer
–  Depending on number of machines maintaining history buffers,

varying numbers of crash faults can be tolerated

AP 9/01

Objects and Capabilities

•  Amoeba is an object-based system.
–  The system can be viewed as a collection of objects, on each of which

there is a set of operations that can be performed.
–  The list of allowed operations is defined by the person who designs

the object and who writes the code to implement it.

•  Both hardware and software objects exist.
•  Associated with each object is a capability

–  a kind of ticket or key that allows the holder of the capability to perform
some (not necessarily all) operations on that object.

•  Capabilities are protected cryptographically to prevent
users from tampering with them.

AP 9/01

Structure of a Capability
•  A capability is 128 bits long and contains four fields.
•  The first field is the server port , and is used to identify the (server)

process that manages the object.
–  It is in effect a 48-bit random number chosen by the server.

•  The second field is the object number ,
–  used by the server to identify which of its objects is being addressed.
–  Together, the server port and object number uniquely identify the object on

which the operation is to be performed.

•  The third field is the rights field, which contains a bit map telling
which operations the holder of the capability may perform.

–  Since the operations are usually coarse grained, 8 bits is sufficient.

AP 9/01

Objects and Capabilities (contd.)

•  Each user process owns some collection of capabilities, which
together define the set of objects it may access and the type of
operations he may perform on each.

–  Capabilities are a unified mechanism for naming/accessing/protecting objects.
–  Function of the OS is to create an environment in which objects can be created

and manipulated in a protected way.

•  This object-based model is implemented using RPC
–  Remote procedure call

•  Associated with each object is a server process.
–  To perform an operation on an object, a process sends a request message to

the server that manages the object.
–  The message contains the capability for the object, a specification of the

operation to be performed, and any parameters the operation requires.

AP 9/01

Restricted Capabilities

•  Generation of a restricted capability from an owner capability

Port Object 111111111 Checksum C

New rights mask
00000001

Exclusive OR

One-way function

Port Object 00000001 F(C xor 00000001)

Restricted Capability

Owner Capability

AP 9/01

Standard Operations on Objects

Call Description

Age Perform a garbage collection cycle

Copy Duplicate the object and return a capability for the copy

Destroy Destroy an object and reclaim its storage

Getparams Get parameters associated with the server

Info Get an ASCII string briefly describing the object

Restrict Produce a new, restricted capability for the object

Setparams Set parameters associated with the server

Status Get current status information from the server

Touch Pretend the object was just used

AP 9/01

Usage of Capabilities

•  In (a), a group of three memory segments have been
created, each of which has its own capability.
–  Capabilities, the creator can read and write the segments.
–  Given a collection of memory segments, a process can go to the

process server and ask for a process to be constructed from them, as
shown in (b).

–  This results in a process capability, through which the new process
can be run, stopped, inspected, and so on.

•  Location transparent and more efficient in a distributed
system than the UNIX fork system call.

AP 9/01

The Amoeba Servers

•  Most of the traditional operating system services (such
as the directory server) in Amoeba are implemented as
server processes.
–  All these servers follow a common (message-based) communication

model and use capabilities for access control

•  Standard servers:
–  File server (bullet server)
–  Directory server (soap server)
–  Process server
–  Server for object replication
–  Monitoring servers for failure handling

AP 9/01

The Bullet Server

•  Like all operating systems, Amoeba has a file system.
–  The choice of file system is not dictated by the operating system.

•  The file system runs as a collection of server
processes.

•  The bullet server was designed to be very fast
(hence the name).
–  Files are immutable
–  Once a file has been created, it cannot subsequently be changed.
–  It can be deleted, and a new file created in its place, but the new file

has a different capability than the old one.

•  This fact simplifies automatic replication
–  There are only two major operations on files: CREATE and READ.

AP 9/01

The Bullet Server (contd.)

•  Because files cannot be modified after their creation, the size of a
file is always known at creation time.

–  Files can be stored contiguously on the disk, and also in the in-core cache.
–  By storing files contiguously, they can be read into memory in a single disk

operation, and they can be sent to users in a single RPC reply message.
–  These simplifications lead to high performance.

•  The bullet server maintains a table with one entry per file,
analogous to the UNIX i-node table.

–  When a client process wants to read a file, it sends the capability for the file to
the bullet server.

–  The server extracts the object number from the capability and uses it as an
index into the in-core i-node table to locate the entry for the file.

–  The entry contains the random number used in the Check Field as well as
some accounting information and two pointers: one giving the disk address of
the file and one giving the cache address (if the file is in the cache).

AP 9/01

Bullet Server Operation

•  Simple implementation leads to high performance.
–  Implementation is well suited to optical juke boxes and other write-

once media, and can be used as a base for more sophisticated
storage systems.

AP 9/01

The Directory Server

•  Provides a mapping from human-readable (ASCII)
names to capabilities.
–  Users can create one or more directories, each of which contains

multiple (name, capability-set) pairs.
–  Operations are provided to create and delete directories, add and

delete (name, capability-set) pairs, and look up names in directories.
–  Unlike bullet files, directories are not immutable.
–  Entries can be added to existing directories and entries can be deleted

from existing directories.

AP 9/01

Sample Directory Layout

The entry for a given name in a given column
may contain more than one capability - a
group of capabilities for replicas of the file.

AP 9/01

Sample Directory Layout (contd.)

•  One row for each of the six file names stored in it.
•  Three columns, each one representing a different

protection domain.
–  First column might store capabilities for the owner (with all the rights

bits on),
–  the second might store capabilities for members of the owner's group

(with some of the rights bits turned off),
–  and the third might store capabilities for everyone else (with only the

read bit turned on).

•  When the owner of a directory gives away a capability
for it, the capability is really a capability for a single
column, not for the directory as a whole.

AP 9/01

The Boot Server

•  The boot server is used to provide a degree of fault
tolerance to Amoeba.

•  A process that is interested in surviving crashes can
register with the boot server.
–  They agree on how often the boot server should poll, what it should

send, and what reply it should get.
–  If the server responds correctly, the boot server takes no further

action.

•  If the server should fail to respond after a specified
number of attempts,
–  the boot server declares it dead, and
–  arranges to allocate a new pool processor on which a new copy is

started.

AP 9/01

Amoeba as a
Program Development Environment

•  Partial UNIX emulation library
•  Numerous UNIX application programs have been written or ported

–  binary compatibility with UNIX was not a goal
–  a set of library procedures emulate most of the common UNIX system calls,

such as OPEN, READ, WRITE, CLOSE, FORK, and so on.
–  The ultimate goal is POSIX P1003.1 conformance, although that has not yet

been achieved.
–  Each library procedure performs its work by making calls on the Amoeba

servers.
•  For example, the usual way the file system calls are handled is

–  to read the file into the caller's address space in its entirety (if possible),
–  operate on it locally, and then
–  write it back to the bullet server in a single CREATE operation.
–  Finally, the new capability is installed in the proper directory, removing the old

one.
–  Then the old file can be deleted by the bullet server.

AP 9/01

Programming with Amoeba (contd.)

•  UNIX file system sits on top of the bullet server,
–  the latter's file replication facility is automatically present

•  Amoeba and its servers are largely stateless,
–  Various aspects of UNIX require maintaining state information.
–  Session server keeps track of the the current UNIX login session.
–  Many UNIX-like utilities are available with Amoeba (well over 100).
–  Compilers are available for C, Pascal, Modula 2, Orca.

•  Amoeba programs contain any UNIX code whatsoever.
AT&T license is not required for Amoeba.

•  Amoeba is distributed with full source code.

AP 9/01

Orca - Parallel Programming

•  Another use of Amoeba is for supporting parallel programming.
–  the processor pool model is an attractive way to exploit massive parallelism.
–  processors communicate using RPC and other techniques.

•  Orca (Bal, 1990; Bal and Tanenbaum, 1991
•  Orca is based on shared data objects upon which specific

operations are defined (in effect, abstract data types).
–  Processes on different processors can share these abstract objects, even

though the system itself does not necessarily contain any physical shared
memory.

–  How this illusion is supported is the job of Amoeba and the Orca run-time
system.

–  The basic idea is that each shared object is replicated in full on all processors
that are running a process interested in the shared object (Bal and Tanenbaum,
1991).

AP 9/01

Orca on Amoeba

•  Orca operations are divided into two categories:
–  those involving only reading the object, and those changing the object.

•  The read operations are easy.
–  Since a copy of the object is located on each machine, the operation

can be performed entirely locally, with no network traffic.
–  This means that they can be performed with no delay, highly

efficiently.

•  Operations that involve changing an object are more
complicated.
–  The algorithm used is based on one of the services offered by

Amoeba 5.0, reliable broadcast (Kaashoek and Tanenbaum, 1991).
–  By this we mean, a message from one sender can be sent to a group

of receivers with certainty that all of them will receive it (unless some
of them crash).

AP 9/01

Amoeba on a Wide Area Network

•  Main difference between a LAN and a WAN is the lack of
broadcasting on a WAN.

–  When a process performs an RPC using a capability whose port has not
previously been used, the kernel on that machine locates the destination by
broadcasting a special LOCATE packet.

–  On a wide area network, such broadcasts are not possible,
–  A slightly different approach is taken, one that preserves the goal of

transparency---the client cannot tell where the server is,
–  all actions taken by both client and server are the same, whether they are on

the same network or not.
•  WAN services are required to publish their port.

–  Publishing a port is done by the (human) owner of the service,
–  To publish the port, the owner runs a special program that sends the server's

port and network address to the set of gateways on whose networks the server
is to be known.

AP 9/01

Amoeba on a WAN (contd.)

•  When a WAN service is published, a special server agent process
is created on the gateway machine.

–  This server agent listens to the server's port.
–  When a client on the server agent's LAN does an RPC to the server, the client's

kernel broadcasts a LOCATE packet, which is received by the gateway.
–  The gateway's kernel responds in the usual way,
–  The server agent then passes it to a link process, which transmits it over the

wide-area link using whatever protocol is required there.
•  At the destination, a client agent is created, which does an RPC

with the server.
–  The reply follows the reverse path back to the client.

AP 9/01

Lessons learned

•  The use of a microkernel has been very satisfactory.
–  A microkernel-based design is simple and flexible.
–  The potential fear that it would be too slow for practical use has

not been borne out.
–  By making it possible to have servers that run as user processes, we have

been able to easily experiment with different kinds of servers and to write and
debug them without having to bring down and reboot the kernel all the time.

–  For the most part, RPC communication has been satisfactory, as have the
three primitives for accessing it.

–  Occasionally, however, RPC gives problems in situations in which there is no
clear master-slave relation, such as in UNIX pipelines (Tanenbaum and van
Renesse, 1988).

–  Another difficulty is the fact that although RPC is fine for sending a message
from one sender to one receiver, it is less suited for group communication.

AP 9/01

Lessons learned (contd.)

•  The object-based model for services has also worked
well.
–  Clear model for the design of services.

•  The use of capabilities for transparent naming and
protection can be largely regarded as a success.
–  It is conceivable, however, that if the system were to be extended to

millions of machines worldwide, the idea of using capabilities would
have to be revisited.

–  The fear is that casual users might be too lax about protecting their
capabilities.

AP 9/01

Additional Reading

–  Tanenbaum, A.S., Kaashoek, M.F., Renesse, R. van, and Bal, H.:
"The Amoeba Distributed Operating System-A Status Report,"
Computer Communications, vol. 14, pp. 324-335, July/August 1991.

–  Tanenbaum, A.S., Renesse, R. van, Staveren, H. van., Sharp, G.J.,
Mullender, S.J., Jansen, A.J., and Rossum, G. van: "Experiences with
the Amoeba Distributed Operating System," Commun. ACM, vol. 33,
pp. 46-63, Dec. 1990.

–  Kaashoek, M.F., and Tanenbaum, A.S.: "Efficient Reliable Group
Communication for Distributed Systems"
(submitted for publication, 1994)

–  Tanenbaum, A.S., „Distributed Operating Systems“,
Prentice-Hall, 1995.

–  http://www.cs.vu.nl/vakgroepen/cs/amoeba_papers.html

