
AP 9/01

Unit 14: The Mach Operating System

14.4. The Shared Objects Net-interconnected
Computer (SONiC)

AP 9/01

The Shared Objects Net-
interconnected Computer (SONiC)

•  Parallel Computing in Networks of Workstations (NOW)
–  Spare computing capacity / redundancy
–  Object-based distributed shared memory (DSM) / Ease-of-Use

•  Shared Objects – Communication and Synchronization
–  Remote Execution Service - fork/join-Parallelism
–  Programming with replicated C++ objects

•  Resource sharing among
–  Interactive users / parallel computations

•  Commercial off-the-shelf systems (COTS)
–  Standard system software: Mach, Windows NT/2000

Research
project at the

Computer Arch.
and Comm. Group

www.polze.de/andreas

AP 9/01

Structure of the SONiC
Runtime System

•  Mach Microkernel provides a sound basis:
–  Networking implemented by user space-servers
–  Mach supports multiple scheduling policies and provides

access to the scheduler
–  Modern OS Parallel Task

Parallel Task Parallel Task

Rexec
Server

Scheduling
Server

Object
Repository

Mach OS
Microkernel

SONiC

AP 9/01

The Scheduling Server Approach

•  High-priority process manipulates dynamically priority of
client processes
–  Based on fixed priority scheduling-policy
–  handoff scheduling - hints to the system scheduler

Scheduling Server implements:
•  Round Robin
•  Earliest Deadline First (EDF)
•  Rate Monotonic Scheduling (RMS)

ensures interactive availability!

Without changes to operating system kernel

client
tasks

task list

A B C

Scheduling
Server

task control port
deadline

AP 9/01

Scheduling Server:
 Stability with little Overhead

•  Implementation based on Mach OS (NeXTSTEP), HP PA-RISC
•  Little impact of varying background/disk-I/O loads
•  Overhead less than 10%, typically 5%

AP 9/01

The Programmers View

AP 9/01

SONiC Communication Structure

•  Write-invalidate and
write-update protocols
supported

•  Programmer deals with
replicated C++ data
structures (objects)

•  „invisible“ consistency
management

parallel task 1

class C o1;

msg_send()
msg_receive()

o1.put();

msg_send()

consistency
manager
thread

msg_receive()
msg_send()

parallel task 2

class C o1;

msg_send()
msg_receive()

msg_send()
msg_receive()

o1.read();
class C o2;

msg_send()
msg_receive()

o1.read();
o2.put();

msg_send()

consistency
manager
thread

msg_receive()

Object repository
task

objID list of copies
(port,addr)

o1

o2

(7, 0x0400)
(38, 0x640)

(38, 0x648)

register object
(update)

owner (me)

update copies

obtain owner
port & obj-addr

register copy

update object

obtain
object‘s values

register object (invalidate)

owner (me)

invalidate copies

AP 9/01

Memory Representation
of Replicated Data

•  Example: Processes write disjunctive portions of an array
•  Multicomputer (Sequent Symmetry):

–  Hardware defines layout of a data structure
–  Exclusive write accesses to memory pages

•  Shared Objects:
–  Programmer (Algorithm-Designer) defines layout of data structures
–  Data are represented as replicated Sub-Arrays t, Read-replication
–  Partially allocated structures
–  Simultaneous write-accesses to disjunctive sub-arrays are possible (!)

AP 9/01

Observations

•  Software-DSM systems are easy to use
(sequential programming model)

•  Well suited for coarse-grained control parallel programming
•  Variety of weakly consistent memory management protocols;
•  many experimental systems:

–  Munin, TreadMarks (Rice Univ.) (release consistency),
–  MIDWAY (CMU) (entry consistency),
–  PANDA (U.Kaiserslautern) (page differentiation, migration),
–  Linda (Yale) (Tuple Space)

•  No single standard system
•  Reliability? – predictable system behavior?

Motivation for research on middleware-based systems

