
AP 9/01

Unit 14: The Mach Operating System

14.3. Mach Memory Management

AP 9/01

Mach Virtual Memory Management

•  Each Mach task receives a 4-gigabyte virtual address space for its
threads to execute in.

•  A task can modify its address space in several ways. It can:
–  Allocate a region of virtual memory (on a page boundary).
–  Deallocate a region of virtual memory.
–  Set the protection status of a region of virtual memory.
–  Specify the inheritance of a region of virtual memory.
–  Create and manage a memory object that can then be mapped into the space

of another task.

•  Regions for virtual memory operations must be aligned on system
page boundaries.

–  The size in bytes of a virtual memory page is contained in the vm_page_size
variable.

AP 9/01

Virtual Memory

•  Mach manages memory regions
–  sections of virtual address space
–  Identified by base address and a size

•  Memory objects can be mapped onto
unused portions of the address space
–  Page, set of pages, memory mapped files

File region

File region

Stack region

Data region

Text region

Unused
 virtual

 address
 space

AP 9/01

Inheritance and Protection of Memory

•  With UNIX, creating a new process entails creating a
copy of the parent's address space.
–  inefficient operation;
–  often child task touches only a portion of its copy of the parent's

address space.

•  Under Mach, the child task initially shares the parent's
address space.

•  Copying occurs only when needed, on a page-by-page
basis.

AP 9/01

Inheritance of Memory (contd.)

•  A task may specify that pages of its address space be
inherited by child tasks in three ways:

Copy:
–  Pages marked as copy are logically copied by value;
–  For efficiency copy-on-write techniques are used.
–  This is the default mode of inheritance if no mode is specified.

Shared:
–  Pages specified as shared can be read from and written to by both the

parent and child.

None
–  Pages marked as none aren't passed to a child.
–  The child's corresponding address is left unallocated.

AP 9/01

Paging Objects

•  Paging Objects
–  secondary storage object that's mapped into a task's virtual memory.
–  Paging objects are commonly files managed by a file server;
–  may be implemented by any port that can handle requests to read and

write data.

•  Physical pages in an address space have paging
objects associated with them.
–  identify the backing storage to be used when a page is to be read in or

written.

AP 9/01

Operation of Mach VM

•  Code is split into three parts
–  Pmap module runs in kernel and deals with MMU

(Memory Management Unit)
–  Machine-independent kernel code
–  External pager (user-space memory manager)

•  Pager manages backing store (disk)
–  Kernel and memory manager communicate via well-defined protocol
–  Users may write their own memory managers
–  Pagers are not required to use secondary storage at all:

instead of paging onto a disk they may send memory pages to remote
machines across a network

–  This allows for transparent implementation of distributed shared
memory

AP 9/01

External Pagers
An external pager provides access to secondary storage through
memory objects

AP 9/01

Shared Memory based
on External Pagers

AP 9/01

Virtual Memory Functions

•  vm_allocate() to get new virtual memory
•  vm_deallocate() to free virtual memory

•  The UNIX functions malloc(), calloc(), and free(), use

vm_allocate() and vm_deallocate().
•  Memory may appear in a task's address space as the

result of a msg_receive() operation.

AP 9/01

VM Functions (contd.)

•  malloc() and calloc() are library subroutine calls;
•  vm_allocate() is a Mach kernel function, which is

somewhat more expensive.
•  If memory has been allocated with vm_allocate(),

–  it must be deallocated with vm_deallocate();
•  if it was allocated with malloc()

–  it must be deallocated with free().

•  Memory that's received out-of-line from a message has
been allocated by the kernel with vm_allocate().

•  vm_copy(), vm_read(), vm_write() copy memory pages
between tasks.

AP 9/01

Operation of vm_read/vm_write

AP 9/01

UNIX Emulation in Mach

•  Mach has various servers that run on top of it
–  UNIX server contains large amount of Berkely UNIX code
–  Essentially the entire file system code is contained in UNIX server

•  UNIX server (UX) operation:
–  Server and emulation library interact
–  At system start, UX instructs kernel to redirect system call traps to

emulation library
–  Emulation library inspects processor registers to determine which

system call was invoked
–  It calls UX server via Mach IPC (RPC)
–  On return, control is given directly to the caller (user program)
–  fork()/exec() have been modified so that the emulation library is

attached to every newly created task

AP 9/01

UNIX Emulation (contd.)

UNIX
binary

Emulation
library

UNIX binary
traps to the

kernel to make
a system call

RPC to UNIX server
to carry out
system calls

UNIX
server (UX)

BSD service
thread

i-node pager

Device thread

Trap is
reflected

back to the
emulation

library

1

2

3

4

AP 9/01

UNIX Server Implementation

•  Implemented as a collection of C-threads
•  Most threads handle BSD system calls

–  Emulation library communicates with server threads using Mach IPC

•  When a message comes in...
–  An idle thread accepts it
–  Determines originator and extracts system call number and parameters
–  Executes the call and sends back the reply

•  Most messages correspond exactly to one BSD system
call

AP 9/01

Implementation of I/O Calls

•  For performance reasons, I/O is implemented differently
•  Files are mapped directly in caller‘s address space

–  Emulation library operates on mapped file
–  Page faults will occur when accessing the mapped file

•  Each page fault requires interaction with external pager
–  i-node pager thread inside UX server operates as external pager
–  It accesses the disk and arranges for it to be mapped into the

application program‘s address space

•  i-node pager thread synchronizes operations on files
opened by several UNIX tasks simultaneously

AP 9/01

Additional Reading

•  J. Boykin, D. Kirschen, A. Langerman, S. LoVerso, „Programming
under Mach“, Addison-Wesley, 1993.

•  A.S. Tanenbaum, „Distributed Operating Systems“, Prentice Hall,
1995.

•  David. L. Black. „Scheduling Support for Concurrency and
Parallelism in the Mach Operating System“ CMU Technical Report
CMU-CS-90-125, also May 1990 IEEE Computer.

•  David Golub, Randall Dean, Alessandro Forin, Richard Rashid.
„Unix as an Application Program“, Proceedings of the USENIX
Summer Conference, June 1990.

•  www-2.cs.cmu.edu/afs/cs.cmu.edu/project/mach/public/www/mach.html

