
AP 9/01

Unit 14: The Mach Operating System

14.1. Mach Overview and System Concepts

AP 9/01

The Mach Operating System

•  Research project at Carnegie Mellon University (CMU)
•  based on a simple communication-oriented kernel
•  designed to support distributed and parallel

computation
•  provides UNIX 4.3BSD compatibility

•  small, extensible system kernel provides:
–  Processor scheduling
–  Management of virtual memory
–  Interprocess communication

AP 9/01

History of Mach

•  RIG (Rochester Intelligent Gateway)
–  Research OS for 16-bit Data General minicomputer (Eclipse)
–  University of Rochester, Richard Rashid et al., 1975
–  Demonstrate modular structuring of an OS
–  Message-passing communication

•  Accent
–  Message-passing OS at Carnegie Mellon University

(Rashid moved to CMU in 1979)
–  PERQ machine with bitmapped screen, mouse, network
–  Protection, transparent networking and 32-bit virtual memory manag.
–  Operational by 1981
–  Accent was running on 150 PERQs by 1984

AP 9/01

History of Mach (contd.)

•  Mach
–  Third-generation OS
–  Compatible with UNIX
–  Many improvements over Accent
–  threads, better interprocess communication, multiprocessor support,

novel virtual memory system

•  DARPA Strategic Computing Initiative
–  U.S. Department of Defense‘s Advanced Research Projects Agency

was searching for a multiprocessor operating system
–  CMU was selected, substantial DARPA funding
–  Mach was combined with 4.2/4.3BSD code
–  Large kernel but absolute compatibility with Berkeley UNIX

(DARPA requirement)

AP 9/01

History of Mach (contd.)

•  Mach 2 was released
–  VAX 11/784 version (4 CPU multiprocessor) in 1986
–  Ports to IBM PC/RT and Sun3 in 1987
–  Versions for Encore and Sequent multiprocessors available in 1987

•  OSF/1
–  Open Software Foundation (consortium of vendors; IBM, DEC, HP,...)

selected Mach 2.5 as basis for OSF/1
–  Alliance against AT&T and Sun Microsystem‘s UNIX System V.4
–  Large and monolithic kernel

•  Mach 3 microkernel OS
–  CMU removed all BSD code from kernel and put it in user space
–  User-level OS emulator for BSD UNIX in 1988.

AP 9/01

Mach Components

•  Kernel exports a small number of abstractions through
an integrated interface.

•  Operating system support environments provide:
–  distributed file access
–  transparent network interprocess communication
–  remote execution facilities
–  UNIX 4.3BSD emulation

•  Many traditional operating system functions can be
implemented by user programs or servers outside the
kernel.

AP 9/01

Mach provides features not found in
UNIX 4.3BSD:

•  Multiple tasks, each with a large, paged virtual memory space
•  Multiple threads of execution within each task, with a flexible

scheduling facility
•  Flexible sharing of memory between tasks
•  Efficient and consistent message-based interprocess

communication
•  Memory-mapped files
•  Transparent network extensibility
•  A flexible, capability-based approach to security and protection
•  Support for multiprocessor scheduling

AP 9/01

Tasks and Threads

•  Mach splits the notion of a process into two
abstractions,
the task and the thread:

•  Task
–  environment for program execution
–  basic unit of protection
–  basic unit of resource allocation, including

•  paged virtual address space
•  port rights that protect access to system resources

–  The task itself performs no computation; it is a framework for running
threads.

AP 9/01

Tasks and Threads (contd.)

•  Thread
–  basic unit of execution
–  lightweight process executing within a task – defined by processor

state
–  executes within the context of a single task
–  each task may contain more than one thread
–  All threads within a task share

•  the virtual memory address space and
•  communication rights of that task.

–  basic unit of scheduling
–  multiple threads from one task may be executing simultaneously.

AP 9/01

Task and Thread Ports

•  Tasks and threads are represented by ports
(message queues).

•  Task port and thread port tell the kernel which task or
thread is executing a function call.
–  task_self() and thread_self() return task and thread ports of the

currently executing thread.

•  Tasks can have access to the task and thread ports of
other tasks and threads.
–  creator gets access to a new task port or thread port
–  any thread can pass access to ports in a message to other threads

AP 9/01

Task and Thread Ports (contd.)

•  Access rights to a task or thread port allow
–  to act on behalf of that task or thread
–  to perform Mach function calls

•  Access to a task's port indirectly permits access to all
threads within that task.

•  The task port and thread port are often called kernel
ports.

•  Tasks and threads have a number of special ports
associated with them.
–  Notify port, Exception port, Bootstrap port.

AP 9/01

A Mach Task

Task port Bootstrap
port

Exception
 port

Registered
ports Kernel

Task
Address
space

Thread

Suspend counter
Scheduling parameters
Emulation address
Statistics

Other task‘s properties

AP 9/01

Mach Ports and Messages

•  Communication among operating system objects is achieved
through messages.

•  Mach messaging is implemented by three kernel abstractions:
•  Port

–  protected communication channel
–  implemented as a finite-length message queue)
–  basic object reference mechanism in Mach
–  similar to that of object references in an object-oriented system

•  Operations are requested by sending messages to and from the
ports that represent objects.

•  When a task is created, a port that represents the task is
simultaneously created.

•  When the task is destroyed, its port is also destroyed.

AP 9/01

Mach Ports and Messages (contd.)

•  Port set
–  group of ports, combining the message queues of the constituent ports.
–  may be used to receive a message sent to any of several ports.

•  Messages
–  Used to communicate between objects;
–  data stream consisting of two parts:

•  fixed-length header
•  variable-length message body -- typed data objects

–  header contains information about:
•  size of the message, its type, and its destination

–  body contains the content (or a pointer to the content) of the message
–  Messages may be of any size, may contain:
–  in-line data, pointers to data, and capabilities for ports.

•  A single message may transfer the entire address space of a task.

AP 9/01

Port Access Rights

•  Communication between objects is protected by a system of port
access rights (Capabilities).

•  Send access to a port
–  Implies that a message can be sent to that port.

•  Receive access to a port
–  Allows a message to be de-queued from that port.
–  Only one task may have receive access for a given port at a time;
–  more than one thread within that task may concurrently attempt to receive

messages
–  receive access implies send rights.

•  Multiple tasks may hold send rights to the same port, but
–  only one task at a time may hold receive rights to a port.

•  Port access rights can be passed in messages.

AP 9/01

Port Sets

•  Port sets are
–  a bag holding zero or more receive rights.
–  a mechanism to allow a thread to block while waiting for a message

sent to any of several ports.

•  A port may be a member of no more than one port set
at any time, and a task can have only one port set.
–  port_set_allocate(), port_set_add(),
–  port_set_remove(), port_set_status(), port_set_deallocate().

•  Unlike port rights, a port set right can't be passed in
messages.

AP 9/01

Port Names

•  Every task has its own port name space, used for port
and port set names.
–  For example, one task with receive rights for a port may know the port

by the name 13,
–  while another task with send rights for the same port may know it by

the name 17.

•  A task has only one name for a port.
•  Typically, these names are small integers, but this is

implementation dependent.
–  port_rename() call can be used to change a task's name for a port.

AP 9/01

Port Queues

•  Messages that are sent to a port are held there until removed by a
thread.

–  The queue associated with a port is of finite length and may become full.

•  A thread sending to a filled queue has a choice of three
alternatives:

–  By default, the sender is suspended until it can successfully transmit the
message.

–  The sender can have the kernel hold the message for later transmission.
–  If the sender selects this action, it can't transmit further messages to the port

until the kernel notifies it that the port has received the initial message.

•  The attempt to send a message to a full port can be reported to the
sender as an error.

AP 9/01

Client/Server Setup

AP 9/01

Programming with Ports (IPC)

•  Allocating a port

include <mach/mach.h>
include <mach/port.h>

int allocate_port(port_name_t* port) {
 /* allocate a new port */

 kern_return_t ret;
 ret = port_allocate(task_self(), port);
 if (ret != KERN_SUCCESS) {
 mach_error("port_allocate:", ret);
 return -1;
 }
 return 0;
}

AP 9/01

Registering with the Name Service
include <mach/mach.h>
include <servers/netname.h>
include <mach/message.h>
include <mach/port.h>

int allocate_and_check_in_port(char* name,port_name_t* port) {
/* allocate a new port and check the name in with netmsgserver*/
 kern_return_t ret;
 netname_name_t n_name;
 ret = port_allocate(task_self(), port);
 if (ret != NETNAME_SUCCESS) return -1;
 strncpy(n_name, name, sizeof(n_name));

 ret = netname_check_in(name_server_port, n_name,
 task_self(), *port);
 if (ret != NETNAME_SUCCESS) return -2;
 return 0;

}

AP 9/01

Looking up a Port

int lookup_port(char * name, port_name_t * port) {
 /* lookup a port registered with netmsgserver */

 kern_return_t ret;

 netname_name_t n_name;

 strncpy(n_name, name, sizeof(n_name));

 /*the pseudo name “*“ initiates a broadcast on the net*/

 if ((ret = netname_look_up(name_server_port, “*“,
 n_name, port)) != NETNAME_SUCCESS) {
 mach_error("netname_lookup", ret);

 return -1;

 }

 return 0;

}

AP 9/01

Programming with Mach IPC

•  Interface definition file packets.defs - Mach 3

subsystem packets 0;
ServerPrefix Serv_;

include <mach/mach_types.defs>

routine send_packet(
RequestPort server: mach_port_t;
in count: int

);

simpleroutine server_exit(
RequestPort server: mach_port_t

);

AP 9/01

Mach Interface Generator (MIG)

AP 9/01

MIG Operations

AP 9/01

MIG Declarations - EBNF

operation ::= operation-type op-name (parameter-list);
| function op-name (parameter-list) : func-
type;.

operation-type ::= simpleroutine | routine
| simpleprocedure | procedure.

parameter-list ::= parameter { ; parameter }.
parameter ::= [specification] var-name : type [, dealloc-

flag].

specification

::= in | out | inout
| RequestPort | ReplyPort | WaitTime |
MsgType.

AP 9/01

Network-transparent IPC

•  netmsgserver extends reach of local IPC
–  uses TCP/IP to transmit IPC messages to remote sites
–  provides a network-wide name service for port lookup

