Terminology

What is Preemption?

Preemption

What new challenges did Preemption introduce when compared to cooperative multiprogramming?

Preemption

How is Preemption implemented in an operating system kernel?

Terminology

Compare Concurrency and Parallelism.

Terminology

What is a Critical Section?

What is a the value of shared, and why?

```
int shared = 0;
void func_a(void) void func_b(void)
{
    shared++; shared--;
}
```

Describe the three criteria that correct solutions of the Critical Section problem must fulfill.

Why does this naive approach not solve the critical section problem? Outline a schedule.

```
shared int turn = 0;
do { // Code for T<sub>i</sub>
  while (turn != i);
     critical section
  turn = j;
     remainder section
} while (1);
    Operating Systems
```

Name and describe one well known software algorithm that solves the critical section problem.

Discuss whether pure software algorithms are a good solution to the critical section problem.

To mitigate the problems of the software algorithms, hardware approaches are used instead. Which is not one of them?

a) test-and-set
b) outlook
c) exchange
d) interrupt disabling

What is a Semaphore? What operations are defined on Semaphores?

Identify the advantages and disadvantages of using Semaphores over native hardware approaches.

What is a Deadlock? Describe how a Deadlock can be the result of careless use of Semaphores.

Given the following producer/consumer example program, how could you guard it with semaphores?

```
void producer (void) {
                                           void consumer (void) {
 int item;
                                             int item;
                                             while (1) {
 while (1) {
      produce item(&item);
                                                 if (count == 0) suspend();
      if (count == N) suspend();
                                                  remove item(&item);
      insert item(item);
                                                 count = count - 1;
      count = count+1;
                                                 if (count == N-1) wake(producer);
      if (count == 1) wake(consumer)
                                                 consume item(item);
                                                }
}
                               Operating Systems
```

Windows Synchronization

Describe the Role of the Dispatcher Objects.

Windows Synchronization

What does it mean for a Dispatcher Object to be Signaled, or Non-Signaled?

Describe for one type of dispatcher object what can cause it to change between these states.

Name two functions of the Windows or UNIX API related to process synchronization and explain their purpose.

What is the IRQL?

Operating Systems

Describe what tasks the operating system handles at various ranges of IRQLs.

What is a Trap?

Operating Systems

What kinds of event can cause a Trap?

What happens if during interrupt processing an interrupt of lower precedence arrives? What if the precedence is higher?

What are the roles of the Deferred and Asynchronous Procedure Calls? (DPC and APC)

A Thread on Windows executes the Function ReadFile(). Describe the flow of activity from the application to the device and back.

(you can get bonus points for a great answer)

Operating Systems

What is a pipe? Why is it needed?

What is the difference between a pipe and a socket?

Pipes and sockets are tied to the lifetime of a process. What other UNIX construct could you use that survives its creating process, and where is it persisted?

Write in Pseudocode (Windows or UNIX semantics) a program that launches two processes and connects them through a pipe.

Name two functions of the Windows or UNIX API related to inter-process communication, and explain their purpose.

What?

bs@hpi.de

Operating Systems