Portable Systems Group

Windows NT Event - Semaphore Specification
Author: Lou Perazzoli

Original Draft 1.0, January 5, 1989
Revision 1.3, May 11, 1989
Revision 1.4, August 8, 1989
Revision 1.5, October 23, 1989
Revision 1.6, December 1, 1989
Revision 1.7, January 3, 1990

Revision 1.8, January 23, 1990
.Begin Table C.

1. Introduction

1

2. Event Objects

1

2.1 Create Event Object

1

2.2 Open Event Object

2

2.3 Set Event

3

2.4 Reset Event

4

2.5 Pulse Event

4

2.6 Query Event

4

3. Semaphore Objects

5

3.1 Create Semaphore Object

5

3.2 Open Semaphore Object

6

3.3 Release Semaphore Object

7

3.4 Query Semaphore

8

4.0 Delay Execution

9

.End Table C.

1. Introduction

This specification describes the Windows NT event and semaphore objects and the wait services. A definition and an explanation of operation is given for each API. No attempt has been made, however, to fully explain all error conditions and their consequences.

The APIs described include:

NtCreateEvent - create event and open handle

NtOpenEvent - open handle to existing event

NtSetEvent - set event to Signal state
NtResetEvent - set event to Not-Signaled state

NtPulseEvent - set / reset event state atomically
NtQueryEvent - get information about event
NtCreateSemaphore - create semaphore and open handle
NtOpenSemaphore - open handle to existing semaphore
NtReleaseSemaphore - release semaphore
NtQuerySemaphore - get information about semaphore
NtWaitForSingleObject - wait for specified object
NtWaitForMultipleObjects - wait for a list of objects
NtDelayExecution - delay execution for the specified time
NtClose - close an object handle

2. Event Objects

There are two types of event objects, notification events and synchronization events. Notification event objects provide a mechanism for notification. Notification events are either Signaled (TRUE) or Not-Signaled (FALSE). An event may be set multiple times, yet the state remains Signaled. Notification events provides no ownership capability. If multiple threads are waiting on a notification event, then when the event becomes Signaled, all threads waiting for the event are made "runnable". A notification event becomes Not-Signaled only when explicitly reset.

Synchronization event objects have the property that when the event is set, the event attains a state of Signaled, which releases a single thread currently waiting on the event, and then the event immediately attains a state of Not-Signaled. If there are no threads waiting on the event, the state of the event remains Signaled. This allows threads to "synchronize" on the signaling of the event. Like notification events, synchronization events provide no ownership capability.

A synchronization event attains a state of Not-Signaled when explicitly reset or when the first wait operation is satisfied on the event. Note that any time an event attains a state of Not-Signaled, the event count for the state of the event is set to zero.

2.1 Create Event Object

An event object is created and a handle opened for access to the object with the NtCreateEvent function:

NTSTATUS

NtCreateEvent (

OUT PHANDLE EventHandle,

IN ULONG DesiredAccess,

IN POBJECT_ATTRIBUTES ObjectAttributes OPTIONAL,

IN EVENT_TYPE EventType,

IN BOOLEAN InitialState

);

Parameters:

EventHandle - A pointer to a variable that receives the event object handle value.

DesiredAccess - The desired types of access for the event. The following object type specific access flags can be specified in addition to the STANDARD_RIGHTS_REQUIRED flags described in the Object Management Specification.

DesiredAccess Flags
EVENT_QUERY_STATE - Query access to the event is desired.

EVENT_MODIFY_STATE - Modify state access (set and reset) to the event is desired.

SYNCHRONIZE - Synchronization access (wait) to the event is desired.

ObjectAttributes - An optional pointer to a structure that specifies the object's attributes. Refer to the Object Management Specification for details.

EventType - The type of event object to be created. One of NotificationEvent or SynchronizationEvent.
InitialState - The initial state of the event object, one of TRUE or FALSE. If the InitialState is specified as TRUE, the event's current state value is set to one, otherwise it is set to zero.

The NtCreateEvent function creates an event object with the specified initial state. If an event is in the Signaled state (TRUE), a wait operation on the event does not block. If the event is in the Not-Signaled state (FALSE), a wait operation on the event blocks until the specified event attains a state of Signaled, the timeout value is exceeded, or an alert is delivered.

2.2 Open Event Object

A handle can be opened to an existing event object with the NtOpenEvent function:

NTSTATUS

NtOpenEvent (

OUT PHANDLE EventHandle,

IN ULONG DesiredAccess,

IN POBJECT_ATTRIBUTES ObjectAttributes,

);

Parameters:

EventHandle - A pointer to a variable that receives the value of the event object handle value.

DesiredAccess - The desired types of access to the event. The following object type specific access flags can be specified in addition to the STANDARD_RIGHTS_REQUIRED flags described in the Object Management Specification.

DesiredAccess Flags
EVENT_QUERY_STATE - Query access to the event is desired.

EVENT_MODIFY_STATE - Modify state access (set and reset) to the event is desired.

SYNCHRONIZE - Synchronization access (wait) to the event is desired.

ObjectAttributes - A pointer to a structure that specifies the object's attributes. Refer to the Object Management Specification for details.

2.3 Set Event

An event can be set to the signaled state (TRUE) with the NtSetEvent function:

NTSTATUS

NtSetEvent (

IN HANDLE EventHandle,

OUT PLONG PreviousState OPTIONAL

);

Parameters:

EventHandle - An open handle to an event object.
PreviousState - An optional pointer to a variable that receives the previous state of the event. Zero is Not-Signaled, non-zero is Signaled. The value indicates the number of times the event has been set since the last reset.

Setting the event causes the event to attain a state of Signaled, which releases all threads currently waiting on the event. Any threads which issue a wait operation on the event do not block and continue to execute. It also increments the event count for the state of the event.

2.4 Reset Event

The state of an event is set to the Not-Signaled state (FALSE) using the NtResetEvent function:

NTSTATUS

NtResetEvent (

IN HANDLE EventHandle,

OUT PLONG PreviousState OPTIONAL

);

Parameters:

EventHandle - An open handle to an event object.
PreviousState - An optional pointer to a variable that receives the previous state of the event. Zero is Not-Signaled, non-zero is Signaled. The value indicates the number of times the event has been set since the last reset.
Once the event attains a state of Not-Signaled, any threads which wait on the event block, awaiting the event to become Signaled. The reset event service sets the event count to zero for the state of the event.

2.5 Pulse Event

An event can be set to the Signaled state and reset to the Not-Signaled state atomically with the NtPulseEvent function:

NTSTATUS

NtPulseEvent (

IN HANDLE EventHandle,

OUT PLONG PreviousState OPTIONAL

);

Parameters:

EventHandle - An open handle to an event object.
PreviousState - An optional pointer to a variable that receives the previous state of the event. Zero is Not-Signaled, non-zero is Signaled. The value indicates the number of times the event has been set since the last reset.
Pulsing the event causes the event to attain a state of Signaled, which releases all threads currently waiting on the event, and then attain a state of Not-Signaled. The pulse event service sets the event count to zero for the state of the event.

2.6 Query Event

The state of an event can be queried with the NtQueryEvent function:

NTSTATUS

NtQueryEvent (

IN HANDLE EventHandle,

IN EVENT_INFORMATION_CLASS EventInformationClass,

OUT PVOID EventInformation,

IN ULONG EventInformationLength,

OUT PULONG ReturnLength OPTIONAL

);

Parameters:

EventHandle - An open handle to an event object.

EventInformationClass - The event information class about which to retrieve information.
EventInformation - A pointer to a buffer that receives the specified information. The format and content of the buffer depend on the specified event class.
EventInformation Format by Information Class:
EventBasicInformation - Data type is EVENT_BASIC_INFORMATION.

EVENT_BASIC_INFORMATION Structure

EVENT_TYPE EventType - The type of the event.
LONG EventState - The current state of the event.

EventInformationLength - Specifies the length in bytes of the event information buffer.

ReturnLength - An optional pointer which, if specified, receives the number of bytes placed in the event information buffer.

This function provides the capability to determine the state and granted access of an event object.

3. Semaphore Objects

Semaphore objects provide a mechanism for resource gates. When a semaphore is created, it is provided an initial count and maximum count. When a thread waits on a semaphore, if the current count is greater than zero, then the current count is decremented and the thread continues to execute. If the current count is zero, the thread blocks until the count becomes greater than zero. When a thread releases a semaphore, the current count is augmented. Semaphores do not provide ownership; multiple threads can be waiting and releasing the same semaphore.

3.1 Create Semaphore Object

A semaphore object is created and a handle opened for access to the object with the NtCreateSemaphore function:

NTSTATUS

NtCreateSemaphore (

OUT PHANDLE SemaphoreHandle,

IN ULONG DesiredAccess,

IN POBJECT_ATTRIBUTES ObjectAttributes OPTIONAL,

IN LONG InitialCount,

IN LONG MaximumCount

);

Parameters:

SemaphoreHandle - A pointer to a variable that receives the value of the semaphore object handle.

DesiredAccess - The desired types of access for the semaphore. The following object type specific access flags can be specified in addition to the STANDARD_RIGHTS_REQUIRED flags described in the Object Management Specification.

DesiredAccess Flags
SEMAPHORE_QUERY_STATE - Query access to the semaphore is desired.

SEMAPHORE_MODIFY_STATE - Modify state access (release) to the semaphore is desired.

SYNCHRONIZE - Synchronization access (wait) to the semaphore is desired.

ObjectAttributes - An optional pointer to a structure that specifies the object's attributes. Refer to the Object Management Specification for details.

InitialCount - The initial count for the semaphore, this value must be positive and less than or equal to the maximum count.
MaximumCount - The maximum count for the semaphore, this value must be greater than zero..
The NtCreateSemaphore function causes a semaphore object to be created which contains the specified initial and maximum counts.

3.2 Open Semaphore Object

A handle can be opened to an existing semaphore object with the NtOpenSemaphore function:

NTSTATUS

NtOpenSemaphore (

OUT PHANDLE SemaphoreHandle,

IN ULONG DesiredAccess,

IN POBJECT_ATTRIBUTES ObjectAttributes

);

Parameters:

SemaphoreHandle - A pointer to a variable that receives the semaphore object handle value.

DesiredAccess - The desired types of access to the semaphore. The following object type specific access flags can be specified in addition to the STANDARD_RIGHTS_REQUIRED flags described in the Object Management Specification.

DesiredAccess Flags
SEMAPHORE_QUERY_STATE - Query access to the semaphore is desired.

SEMAPHORE_MODIFY_STATE - Modify state access (release) to the semaphore is desired.

SYNCHRONIZE - Synchronization access (wait) to the semaphore is desired.

ObjectAttributes - A pointer to a structure that specifies the object's attributes. Refer to the Object Management Specification for details.

3.3 Release Semaphore Object

A semaphore object can be released with the NtReleaseSemaphore function:

NTSTATUS
NtReleaseSemaphore (

IN HANDLE SemaphoreHandle,

IN LONG ReleaseCount,

OUT PLONG PreviousCount OPTIONAL

);
Parameters:

SemaphoreHandle - An open handle to a semaphore object.
ReleaseCount - The release count for the semaphore. The count must be greater than zero and less than the maximum value specified for the semaphore.

PreviousCount - An optional pointer to a variable that receives the previous count for the semaphore.

When the semaphore is released, the current count of the semaphore is incremented by the ReleaseCount. Any threads that are waiting for the semaphore are examined to see if the current semaphore value is sufficient to satisfy their wait.

If the value specified by ReleaseCount would cause the maximum count for the semaphore to be exceeded, then the count for the semaphore is not affected and an error status is returned.

3.4 Query Semaphore

The state of a semaphore can be queried with the NtQuerySemaphore function:

NTSTATUS
NtQuerySemaphore (

IN HANDLE SemaphoreHandle,

IN SEMAPHORE_INFORMATION_CLASS SemaphoreInformationClass,

OUT PVOID SemaphoreInformation,

IN ULONG SemaphoreInformationLength,

OUT PULONG ReturnLength OPTIONAL

);

Parameters:

SemaphoreHandle - An open handle to a semaphore object.

SemaphoreInformationClass - The semaphore information class about which to retrieve information.
SemaphoreInformation - A pointer to a buffer which receives the specified information. The format and content of the buffer depend on the specified semaphore class.
SemaphoreInformation Format by Information Class:
SemaphoreBasicInformation - Data type is SEMAPHORE_BASIC_INFORMATION.

SEMAPHORE_BASIC_INFORMATION Structure

LONG CurrentCount - The current count of the semaphore.

LONG MaximumCount - The maximum count that may be obtained by the semaphore.

SemaphoreInformationLength - Specifies the length in bytes of the semaphore information buffer.

ReturnLength - An optional pointer which, if specified, receives the number of bytes placed in the semaphore information buffer.

This function provides the capability to determine the state and granted access of a semaphore object

4. Wait Services

Windows NT provides wait services for threads to use for synchronization. A thread can wait on one or more objects to attain a state of signaled, as follows:

o
A thread can wait on a single waitable object.

o
A thread can wait on any waitable object in a list of objects.

o
A thread can wait on all waitable objects in a list of objects.

When a thread executes a wait service, it specifies through the Alertable parameter whether or not alerts and APC's should interrupt the wait. If an alert is delivered while the thread is waiting with Alertable TRUE, the wait service completes and a condition of STATUS_ALERTED is raised. If an APC is delivered while the thread is waiting with Alertable TRUE, the APC is invoked and, when the APC completes, the wait operation re-executed.

An optional TimeOut argument is supplied on the wait services. If the TimeOut argument is not supplied, the wait service completes when the wait conditions have been satisfied, or, when the thread is alerted, if the wait specified alerts.

A TimeOut value is a signed 64 bit integer. If the TimeOut value is positive, then the value is interpreted as an absolute time and the wait expires when the system time equals the specified absolute time. If the TimeOut value is negative, then the absolute value of the TimeOut indicates the number of 100 nanosecond clock ticks to wait from the current time before completing the wait with a time-out status.

4.1 Wait For Single Object

A wait operation on a waitable object is accomplished with the NtWaitForSingleObject function:

NTSTATUS

NtWaitForSingleObject (

IN HANDLE Handle,

IN BOOLEAN Alertable,

IN PTIME TimeOut OPTIONAL

);
Parameters:

Handle - An open handle to a waitable object.
Alertable - A boolean value that specifies whether the wait is alertable.

TimeOut - An optional pointer to a time-out value that specifies the absolute or relative time over which the wait is to be completed.

Waiting on an object checks the current state of the object. If the current state of the object allows continued execution, any adjustments to the object state are made (for example, decrementing the semaphore count for a semaphore object) and the thread continues execution. If the current state of the object does not allow continued execution, the thread is placed into the wait state pending the change of the object's state or time-out.

The returned status value indicates how the wait was satisfied:

o
A value of STATUS_TIME_OUT indicates that the wait was terminated due to the TimeOut conditions.

o
A value of STATUS_SUCCESS indicates the specified object attained a Signaled state thus completing the wait.

o
A value of STATUS_ABANDONED indicates the specified object attained a Signaled state but was abandoned.

4.2 Wait for Multiple Objects
A wait operation on multiple waitable objects (up to MAXIMUM_WAIT_OBJECTS) is accomplished with the NtWaitMultipleObjects function:

NTSTATUS

NtWaitForMultipleObjects (

IN ULONG Count,

IN HANDLE Handles[],

IN WAIT_TYPE WaitType,

IN BOOLEAN Alertable,

IN PTIME TimeOut OPTIONAL

);
Parameters:

Count - A count of the number of objects that are to be waited on.

Handles - An array of object handles.

WaitType - The type of operation that is to be performed (WaitAny or WaitAll).

Alertable - A boolean value that specifies whether the wait is alertable.

TimeOut - An optional pointer to a time-out value that specifies the absolute or relative time over which the wait is to be completed.

The returned status value indicates how the wait was satisfied:

o
A value of STATUS_TIME_OUT indicates that the wait was terminated due to the TimeOut conditions.

o
A value from 0 to MAXIMUM_WAIT_OBJECTS - 1, indicates, in the case of wait for any object, the object number which satisfied the wait. In the case of wait for all objects, the value only indicates that the wait was completed successfully.

o
A value from STATUS_ABANDONED to STATUS_ABANDONED + (MAXIMUM_WAIT_OBJECTS - 1), indicates, in the case of wait for any object, the object number which satisfied the event, and that the object which satisfied the event was abandoned. In the case of wait for all objects, the value indicates that the wait was completed successfully and at least one of the objects was abandoned.

4.0 Delay Execution
The execution of the current thread can be delayed for a specified interval of time with the NtDelayExecution function:

NTSTATUS

NtDelayExecution (

IN BOOLEAN Alertable,

IN PTIME DelayInterval

);

Parameters:

Alertable - A boolean value that specifies whether the wait is alertable.

DelayInterval - The absolute or relative time over which the wait is to occur.

The NtDelayExecution function causes the current thread to enter a waiting state until the specified interval of time has passed. If Alertable is specified as TRUE, the wait service completes and a condition of STATUS_ALERTED is raised. If an APC is delivered while the thread is waiting alertable, the APC is invoked and the wait operation re-executed.

5. Fast Interprocess Synchronization

A general set of routines should be developed to provide extremely fast synchronization primitives for a single process. These routines could be utilized for medium and fine-grained parallel applications.

Basically a routine is called to allocate the "resource lock". The resource lock consists of a data structure which has a "test and set" variable, status variable, and a waitable object handle.

A request to gain the "lock" does a test and set on the resource lock variable. If the resource lock is unowned, the thread continues to run. If the resource lock is already owned, the thread sets the status variable to indicate waiters are present, rechecks the lock variable, and if not free, makes a system call to wait on the waitable object. Note that for fine grained parallelism with multiprocessors it may be desirable to "spin" on the lock for some period of time before doing the wait.

A request to "unlock" does a test and set on the lock variable, clearing the ownership. If the status variable indicates that waiters are present, the waitable object is "signaled", thereby allowing any waiters to compete for the lock.

In the typical case, a lock request would succeed without blocking and the same for the unlock request. It is only when there is contention on the lock that a call to the system has to be made.
Revision History:
Original Draft 1.0, January 5, 1989

Revision 1.2, March 12, 1989

1.
Removed Muxwait object and Mutex object.

Revision 1.3, May 11, 1989

1.
Added wait for multiple objects.

2.
Added NtDelayExecution

Revision 1.4, August 8, 1989

1.
Make return parameters for PreviousState and CurrentState optional.

Revision 1.5, October 23, 1989

1.
Changed EventName/SemaphoreName in OBJA structure to ObjectName.

2.
Added description of notification and synchronization events.

3.
Changed PreviousState to return a count that indicates the number of times the event was set since the last reset.

4.
Added the EventType to the query event call.

5.
Changed wait services to describe the abandoned state.

Revision 1.6, December 1, 1989

1.
Changed desciption of NtCreateSemaphore, NtCreateEvent, NtOpenSemaphore and NtOpenEvent to use OBJECT_ATTRIBUTES and reference Object Management Specification for detials.

2.
Changed PULONG to PLONG for PreviousState argument in NtSetEvent, NtResetEvent, and NtPulseEvent.

Revision 1.7, January 3, 1990

1.
Clarified the behavior of sychronzation events and the state of the event count.

2.
Changed desired access flags for NtCreateEvent, NtOpenEvent, NtCreateSemaphore, and NtOpenSemaphore.

3.
Removed NtWait description. This is now in the Object Management Specification.

Revision 1.8, January 23, 1990

1.
Changed NtReleaseSemaphore to return a failure if the ReleaseCount is greater than the maximum count.

2.
Changed NtReleaseSemaphore to require the ReleaseCount to be greater than 0.

Microsoft Corporation Company Confidential

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

