
1

Windows Operating System Internals - by David A. Solomon and Mark E. Russinovich with Andreas Polze

Unit OS A: Windows Networking
A.3. Microsoft-specific extensions to Sockets

and other Networking APIs

3

Roadmap for Section A.3

Windows Sockets (winsock2) Extensions
Web access APIs
Named pipes and mailslots
NetBIOS / Wnet API

2

4

Winsock 2.0 Features

Windows NT 4.0 was the first operating system with native support
of the Winsock 2.0 specification:

Access to protocols other than TCP/IP,
Overlapped I/O,
Ability to query and request specific qualities of service

New header file and libraries:
WS2_32.LIB / WS2_32.DLL

winsock2.h

Microsoft extensions to Winsock have been moved out into their
own separate DLL

WINSOCK.DLL contains forwarders to these routines

5

Microsoft-specific Extensions
to Berkeley Sockets

Tailored to the message-passing environment of
windows

WSA – Windows Sockets Asynchronous prefix

Roots in Windows 3.1
Windows Sockets Committee

include <winsock.h>

3

6

Request event notification for a
socket

Request a message to the window hWnd whenever any of the network
events specified by the lEvent occurs.

Message which should be sent is specified by the wMsg parameter.

The socket for which notification is required is identified by s

int PASCAL FAR WSAAsyncSelect (
SOCKET s, HWND hWnd,
unsigned int wMsg, long lEvent);

Want to receive notification of socket closure FD_CLOSE

Want to receive notification of completed connection FD_CONNECT

Want to receive notification of incoming connections FD_ACCEPT

Want to receive notification of the arrival of out-of-band data FD_OOB

Want to receive notification of readiness for writing FD_WRITE

Want to receive notification of readiness for reading FD_READ

MeaningValue

7

WSAAsyncSelect (contd.)

Every window must have a window procedure
Arguments to window procedure for notification window:

wParam contains socket number
lParam contains event code and any error that may have occured

Event status:
WORD wError = WSAGETSELECTERROR(lParam); (wError != 0 ?)

LRESULT WINAPI WndProc(HWND hWnd,
UINT msg, WPARAM wParam, LPARAM lParam);

switch(msg) {
case WM_PAINT: ...
case WM_DESTROY: ...
case FD_ACCEPT: ...
default: return(DefWindowProc(hWnd, msg, wParam, lParam));

}

4

8

WSAAsynchSelect (contd.)

Report the event:
WORD wEvent = WSAGETSELECTEVENT(lParam);

Enabling functions reactivate WSAAsyncSelect:
For FD_READ, FD_OOB events:

ReadFile(), read(), recv(), recvfrom() are enabling functions

For FD_WRITE events:

WriteFile(), write(), send(), sendto() are enabling functions

Request notification of different events:
Call WSAAsyncSelect() again

9

WSAAsyncSelect (contd.)

Issuing a WSAAsyncSelect() for a socket cancels any previous
WSAAsyncSelect() for the same socket.

For example, to receive notification for both reading and writing, the
application must call WSAAsyncSelect() with both FD_READ and
FD_WRITE, as follows:

rc = WSAAsyncSelect(s, hWnd, wMsg, FD_READ | FD_WRITE);
It is not possible to specify different messages for different events.

The following code will not work; the second call will cancel the effects
of the first, and only FD_WRITE events will be reported with message
wMsg2:

rc = WSAAsyncSelect(s, hWnd, wMsg1, FD_READ);
rc = WSAAsyncSelect(s, hWnd, wMsg2, FD_WRITE);

To cancel all notification - i.e., to indicate that the Windows Sockets
implementation should send no further messages related to network
events on the socket - lEvent should be set to zero.

5

10

Use of WSAAsyncSelect
- Server Side

1. Create a socket and bind your address to it
2. Call WSAAsyncSelect():

Request FD_ACCEPT notification
3. Call listen() – returns immediately
4. When connection request comes in:

Notification window receives FD_ACCEPT notification
Respond by calling accept()

5. Call WSAAsyncSelect():
Request FD_READ | FD_OOB | FD_CLOSE notifications for socket
returned by accept()

6. Receiving FD_READ, FD_OOB notifications:
Call ReadFile(), read(), recv(), recvfrom() to retrieve the data

7. Respond to FD_CLOSE notification by calling closesocket()

11

Use of WSAAsyncSelect()
- Client Side
1. Create a socket
2. Call WSAAsyncSelect():

Request FD_CONNECT notification

3. Call connect() – returns immediately
4. When FD_CONNECT notification comes in:

Request FD_READ | FD_OOB | FD_CLOSE notification on socket
(reported in wParam)

5. When data from the server arrives:
Notification window receives FD_READ or FD_OOB events
Respond by calling ReadFile(), read(), recv(), or recvfrom()
Client should be prepared for FD_CLOSE notification

6

12

Get host information corresponding
to an address - asynchronous
version

type:
The type of the address, which must be
PF_INET.

buf:
A pointer to the data area to receive the
hostent data. Note that this must be larger
than the size of a hostent structure. It is
recommended that you supply a buffer of
MAXGETHOSTSTRUCT bytes.

buflen:
The size of data area buf above.

• hWnd:
– The handle of the window which

should receive a message when the
asynchronous request completes.

• wMsg:
– The message to be received when the

asynchronous request completes.
• addr:

– A pointer to the network address for
the host. Host addresses are stored in
network byte order.

• len:
– The length of the address, which must

be 4 for PF_INET.

HANDLE PASCAL FAR WSAAsyncGetHostByAddr (
HWND hWnd, unsigned int wMsg,
const char FAR * addr, int len, int type,
char FAR * buf, int buflen);

asynchronous version of
gethostbyaddr()

13

WSAAsyncGetHostByAddr (contd.)

When the asynchronous operation is complete the application's
window hWnd receives message wMsg.
The wParam argument contains the asynchronous task handle as
returned by the original function call.

The high 16 bits of lParam contain any error code.
The error code may be any error as defined in winsock.h.
An error code of zero indicates successful completion of the
asynchronous operation.

On successful completion, the buffer supplied to the original function
call contains a hostent structure.

To access the elements of this structure, the original buffer address
should be cast to a hostent structure pointer and accessed as
appropriate.

7

14

Get host information corresponding
to a hostname - asynchronous
version

hWnd:
The handle of the window which should receive a message when the
asynchronous request completes.

wMsg:
The message to be received when the asynchronous request completes.

Name:
A pointer to the name of the host.

Buf:
A pointer to the data area to receive the hostent data. It is recommended that
you supply a buffer of MAXGETHOSTSTRUCT bytes.

Buflen:
The size of data area buf above.

HANDLE PASCAL FAR WSAAsyncGetHostByName (
HWND hWnd, unsigned int wMsg,
const char FAR * name,
char FAR * buf, int buflen);

asynchronous version of
gethostbyname()

15

Get protocol information corresponding
to a protocol name - asynchronous
version

hWnd
The handle of the window which should receive a message when the
asynchronous request completes.

wMsg
The message to be received when the asynchronous request completes.

name
A pointer to the protocol name to be resolved.

buf
A pointer to the data area to receive the protoent data. (supply a buffer of
MAXGETHOSTSTRUCT bytes)

buflen
The size of data area buf above.

HANDLE PASCAL FAR WSAAsyncGetProtoByName (
HWND hWnd, unsigned int wMsg,
const char FAR * name, char FAR * buf, int buflen);

asynchronous version of
getprotobyname()

8

16

Get protocol information corresponding
to a protocol number - asynchronous
version

hWnd
The handle of the window which should receive a message when the
asynchronous request completes.

wMsg
The message to be received when the asynchronous request completes.

number
The protocol number to be resolved,
in host byte order.

buf
A pointer to the data area to receive the protoent data (supply a buffer of
MAXGETHOSTSTRUCT bytes)

buflen
The size of data area buf above.

HANDLE PASCAL FAR WSAAsyncGetProtoByNumber (
HWND hWnd, unsigned int wMsg,
int number, char FAR * buf, int buflen);

asynchronous version of
getprotobynumber()

17

Additional Asynchronous
Socket Routines

WSAAsyncGetServByName()
WSAAsyncGetServByPort()
WSACancelAsyncRequest()
WSACancelBlockingCall()
WSACleanup()
WSAGetLastError()
WSAIsBlocking()
WSASetBlockingHook(), WSAUnhookBlockingHook()
WSASetLastError()
WSAStartup()

9

18

WSASetBlockingHook

Application invokes a blocking Sockets operation:
the Windows Sockets implementation initiates the operation and then
enters a loop which is similar to the following pseudocode:

for(;;) {

/* flush messages for good user response */

while(BlockingHook()) ;

/* check for WSACancelBlockingCall() */

if(operation_cancelled()) break;

/* check to see if operation completed */

if(operation_complete()) break;

/* normal completion */

}

support those applications
which require more complex
message processing –
MDI (multiple document
interface) model

19

Web API: Internet Support

WININET.DLL supports HTTP, FTP, Gopher protocols
General-purpose WinInet Functions

InternetOpen
InternetConnect
InternetOpenUrl
InternetReadFile
InternetCloseHandle
InternetSetStatusCallback
InternetQueryOption
InternetSetOption
InternetFindNextFile (FTP and Gopher)

10

20

Internet Suport
(http/gopher protocols)

WinInet HTTP Functions
HttpOpenRequest

HttpAddRequestHeaders

HttpSendRequest

HttpQueryInfo

WinInet Gopher Functions
GopherFindFirstFile

GopherOpenFile

GopherCreateLocator

GopherGetAttribute

21

Internet Support (ftp protocol)

WinInet FTP Functions
FtpFindFirstFile
FtpGetFile
FtpPutFile
FtpDeleteFile
FtpRenameFile
FtpOpenFile
InternetWriteFile
FtpCreateDirectory
FtpRemoveDirectory
FtpSetCurrentDirectory
FtpGetCurrentDirectory
FtpCommand
InternetGetLastResponseInfo

Most of the WinInet functions work with
or return HINTERNETs (handles to Internet).
While your code sees all HINTERNETs as the
same type, one HINTERNET can mean
something completely different from
another.

The first type of HINTERNET that you
obtain comes when you initialize
WININET.DLL by calling InternetOpen.
This is the first of 13 possible subtypes of
HINTERNETs.

11

22

HINTERNET subtypes

Query the subtype of
a particular handle
by calling:

InternetQuery
Option

and sending it the
HINTERNET with the
INTERNET_OPTION_
HANDLE_TYPE
parameter

13INTERNET_HANDLE_TYPE_HTTP_REQUEST

12INTERNET_HANDLE_TYPE_GOPHER_FILE_HTML

11INTERNET_HANDLE_TYPE_GOPHER_FILE

10INTERNET_HANDLE_TYPE_GOPHER_FIND_HTML

9INTERNET_HANDLE_TYPE_GOPHER_FIND

8INTERNET_HANDLE_TYPE_FTP_FILE_HTML

7INTERNET_HANDLE_TYPE_FTP_FILE

6INTERNET_HANDLE_TYPE_FTP_FIND_HTML

5INTERNET_HANDLE_TYPE_FTP_FIND

4INTERNET_HANDLE_TYPE_CONNECT_HTTP

3INTERNET_HANDLE_TYPE_CONNECT_GOPHER

2INTERNET_HANDLE_TYPE_CONNECT_FTP

1INTERNET_HANDLE_TYPE_INTERNET

23

Windows HTTP Services (WinHTTP)

HTTP client API to send requests through the HTTP
protocol to other HTTP servers

WinHTTP supports desktop client applications, Windows
services, and Windows server-based applications

WinHTTP offers both a C/C++ application programming
interface (API) and a COM automation component use in
Active Server Pages

WinHTTP 5.1 is an OS component of:
Windows Server 2003 family

Windows XP SP1

Windows 2000 SP3 (except Datacenter Server)

12

24

Usage of the WinHTTP API
Windows HTTP API exposes a set of C/C++ functions that enable
applications to access HTTP resources on the Web

25

Using Internet Functions

After setting up WININET.DLL, the initial HINTERNET is usually passed to
InternetConnect,

parameter indicates the type of connecting server (HTTP, FTP, or
Gopher).
InternetConnect returns another subtype of HINTERNET, which is
then passed to the appropriate HTTP, FTP, or Gopher functions.
Alternatively call InternetOpenUrl (parses the URL; connects to the
appropriate type of server automatically)

After connecting to the desired server:
turn to the protocol-specific functions

read data from the server via InternetReadFile (works with
HINTERNETs for any of the three supported protocols)

Before exiting the program:
all of the HINTERNETs should be closed by calling

InternetCloseHandle.

13

26

Named Pipes

Message oriented:
Reading process can read varying-length messages precisely as
sent by the writing process

Bi-directional
Two processes can exchange messages over the same pipe

Multiple, independent instances of a named pipe:
Several clients can communicate with a single server
using the same instance
Server can respond to client using the same instance

Pipe can be accessed over the network
location transparency

Convenience and connection functions

27

Using Named Pipes

lpszPipeName: \\.\pipe\[path]pipename
Not possible to create a pipe on remote machine (. – local machine)

fdwOpenMode:
PIPE_ACCESS_DUPLEX, PIPE_ACCESS_INBOUND,
PIPE_ACCESS_OUTBOUND

fdwPipeMode:
PIPE_TYPE_BYTE or PIPE_TYPE_MESSAGE
PIPE_READMODE_BYTE or PIPE_READMODE_MESSAGE
PIPE_WAIT or PIPE_NOWAIT (will ReadFile block?)

HANDLE CreateNamedPipe (LPCTSTR lpszPipeName,
DWORD fdwOpenMode, DWORD fdwPipMode
DWORD nMaxInstances, DWORD cbOutBuf,
DWORD cbInBuf, DWORD dwTimeOut,
LPSECURITY_ATTRIBUTES lpsa);

Use same flag settings for
all instances of a named pipe

14

28

Named Pipes (contd.)
nMaxInstances:

Number of instances,
PIPE_UNLIMITED_INSTANCES: OS choice based on resources

dwTimeOut
Default time-out period (in msec) for WaitNamedPipe()

First CreateNamedPipe creates named pipe
Closing handle to last instance deletes named pipe

Polling a pipe:
Nondestructive – is there a message waiting for ReadFile

BOOL PeekNamedPipe (HANDLE hPipe,
LPVOID lpvBuffer, DWORD cbBuffer,
LPDWORD lpcbRead, LPDWORD lpcbAvail,
LPDWORD lpcbMessage);

29

Named Pipe Client Connections

CreateFile with named pipe name:
\\.\pipe\[path]pipename
\\servername\pipe\[path]pipename
First method gives better performance (local server)

Status Functions:
GetNamedPipeHandleState
SetNamedPipeHandleState
GetNamedPipeInfo

15

30

Convenience Functions

WriteFile / ReadFile sequence:
BOOL TransactNamedPipe(HANDLE hNamedPipe,

LPVOID lpvWriteBuf, DWORD cbWriteBuf,
LPVOID lpvReadBuf, DWORD cbReadBuf,
LPDOWRD lpcbRead, LPOVERLAPPED lpa);

• CreateFile / WriteFile / ReadFile / CloseHandle:
- dwTimeOut: NMPWAIT_NOWAIT, NMPWAIT_WIAT_FOREVER,

NMPWAIT_USE_DEFAULT_WAIT

BOOL CallNamedPipe(LPCTSTR lpszPipeName,
LPVOID lpvWriteBuf, DWORD cbWriteBuf,
LPVOID lpvReadBuf, DWORD cbReadBuf,
LPDWORD lpcbRead, DWORD dwTimeOut);

31

Server: eliminate the polling loop

lpo == NULL:
Call will return as soon as there is a client connection
Returns false if client connected between CreateNamed Pipe call
and ConnectNamedPipe()

Use DisconnectNamedPipe to free the handle for connection from another
client
WaitNamedPipe():

Client may wait for server‘s ConnectNamedPipe()

Security rights for named pipes:
GENERIC_READ, GENERIC_WRITE, SYNCHRONIZE

BOOL ConnectNamedPipe (HANDLE hNamedPipe,
LPOVERLAPPED lpo);

16

32

Windows IPC - Mailslots

Broadcast mechanism:
One-directional
Mutliple writers/multiple readers (frequently: one-to-many comm.)
Message delivery is unreliable
Can be located over a network domain
Message lengths are limited (w2k: < 426 byte)

Operations on the mailslot:
Each reader (server) creates mailslot with CreateMailslot()
Write-only client opens mailslot with CreateFile() and
uses WriteFile() – open will fail if there are no waiting readers
Client‘s message can be read by all servers (readers)

Client lookup: *\mailslot\mailslotname
Client will connect to every server in network domain

Mailslots bear some nasty
implementation details;
they are almost never used

33

Locate a server via mailslot

hMS = CreateMailslot(
“\\.\mailslot\status“);

ReadFile(hMS, &ServStat);
/* connect to server */

hMS = CreateMailslot(
“\\.\mailslot\status“);

ReadFile(hMS, &ServStat);
/* connect to server */

App client 0

App client n

Mailslot Servers

While (...) {
Sleep(...);
hMS = CreateFile(

“\\.\mailslot\status“);
...

WriteFile(hMS, &StatInfo
}

App Server

Mailslot Client
Message is
sent periodically

17

34

Creating a mailslot

lpszName points to a name of the form
\\.\mailslot\[path]name
Name must be unique; mailslot is created locally

cbMaxMsg is msg size in byte
dwReadTimeout

Read operation will wait for so many msec
0 – immediate return
MAILSLOT_WAIT_FOREVER – infinite wait

HANDLE CreateMailslot(LPCTSTR lpszName,
DWORD cbMaxMsg,
DWORD dwReadTimeout,
LPSECURITY_ATTRIBUTES lpsa);

35

Opening a mailslot

CreateFile with the following names:
\\.\mailslot\[path]name - retrieve handle for local mailslot
\\host\mailslot\[path]name - retrieve handle
for mailslot on specified host
\\domain\mailslot\[path]name - returns handle representing all
mailslots on machines in the domain
*\mailslot\[path]name - returns handle representing mailslots on
machines in the system‘s primary domain: max mesg. len: 400 bytes
Client must specifiy FILE_SHARE_READ flag

GetMailslotInfo() and SetMailslotInfo() are similar to their named
pipe counterparts

18

36

WNet API

Connection Functions
WNetAddConnection
WNetAddConnection2
WNetAddConnection3
WNetCancelConnection
WNetCancelConnection2
WNetConnectionDialog
WNetConnectionDialog1
WNetDisconnectDialog
WNetDisconnectDialog1
WNetGetConnection
WNetGetUniversalName

• Enumeration Functions
– WNetCloseEnum
– WNetEnumResource
– WNetOpenEnum

• Information Functions
– WNetGetNetworkInformation
– WNetGetLastError
– WNetGetProviderName
– WNetGetResourceInformation
– WNetGetResourceParent

• User Functions
– WNetGetUser

37

WNetAddConnection

connect a local device to a network resource
successful connection is persistent

system automatically restores the connection during subsequent logon operations
lpRemoteName

Points to a null-terminated string that specifies the network resource to connect to.
lpPassword

Points to a null-terminated string that specifies the password to be used to make a connection. This
parameter is usually the password associated with the current user.
NULL: the default password is used. If the string is empty, no password is used.

lpLocalName
Points to a null-terminated string that specifies the name of a local device to be redirected, such as F:
or LPT1. The case of the characters in the string is not important.

DWORD WNetAddConnection(
LPTSTR lpRemoteName, // pointer to network device name
LPTSTR lpPassword, // pointer to password
LPTSTR lpLocalName // pointer to local device name);

19

38

WNetGetConnection

retrieves the name of the network resource associated with a local device.

DWORD WNetGetConnection(
LPCTSTR lpLocalName, // pointer to local name
LPTSTR lpRemoteName, // pointer to buffer for remote name
LPDWORD lpnLength // pointer to buffer size, in characters);

• lpLocalName
• Points to a null-terminated string that specifies the name of the local

device to get the network name for.

• lpRemoteName
• Points to a buffer that receives the null-terminated remote name

• lpnLength
• Points to a variable that specifies the size´of the buffer.

39

Further Reading

Mark E. Russinovich and David A. Solomon,
Microsoft Windows Internals, 4th Edition, Microsoft
Press, 2004.

Networking APIs (from pp. 791)

Anthony Jones, Jim Ohmund, Jim Ohlund, James
Ohlund, Network Programming for Microsoft Windows,
2nd Edition, Microsoft Press, 2002.

Ralph Davis, Windows NT Network Programming,
Addison-Wesley, 1996.

