
1

Windows Operating System Internals - by David A. Solomon and Mark E. Russinovich with Andreas Polze

Unit OS A: Windows Networking
A.2. Windows Sockets Programming

3

Roadmap for Section A.2

General Concepts - Berkeley Sockets
Creating a socket
Binding an address
Accepting connections
Exchanging data
Closing a connection
Managing multiple connections with select()

2

4

Winsock Features

Support for scatter-gather and asynchronous application I/O

Quality of service (QoS) conventions so that applications can
negotiate latency and bandwidth requirements when the underlying
network supports QoS

Extensibility so that Winsock can be used with protocols other than
those Windows requires it to support

Support for integrated namespaces other than those defined by a
protocol an application is using with Winsock. A server can publish
its name in Active Directory, for example, and using namespace
extensions, a client can look up the server's address in Active
Directory

Support for multipoint messages where messages transmit to
multiple receivers simultaneously

5

Windows Socket Programming

Berkeley Socket programs will port to Window Sockets
Exceptions:

Call WSAStartup() to initialize Windows Socket DLL
Use ioctlsocket() (non-portable) to configure the socket
_read() and _write() can be used on sockets, but only after
converting the socket descriptor to a file handle via
_open_osfhandle()
Use closesocket() (non-portable) rather than close to close a
socket
Call WSACleanup() to shut down the DLL

3

6

Berkeley 4.3 UNIX Sockets –
connection-oriented

Server

socket()

bind()

listen()

accept()

read()

write()

socket()

Client

connect()

write()

read()

connection establishment

data (request)

data (reply)

blocks until connection
from client

7

Berkeley 4.3 UNIX Sockets -
connectionless

Server

socket()

bind()

recvfrom()

sendto()

socket()

Client

sendto()

recvfrom()

data (request)

data (reply)

blocks until data
received from client

4

8

Unix SYS V.3 Transport Layer
Interface – connection-oriented

Server t_open()

t_bind()

t_listen()

t_rcv()

t_snd()

t_open()

Client

t_connect()

t_snd()

t_rcv()

data (request)

data (reply)

blocks until connection
from client

t_alloc() t_bind()

t_alloc()

t_accept()

connection establishment

9

Unix SYS V.3 Transport Layer
Interface - connectionless

Server
t_open()

t_bind()

t_rcvudata()

t_sndudata()

t_open()

Client

t_sndudata()

t_rcvudata()

data (request)

data (reply)

blocks until data
received from client

t_alloc() t_bind()

t_alloc()

5

10

Create a socket

af: An address format specification. The only format
currently supported is AF_INET, which is the ARPA
Internet address format.
type: A type specification for the new socket.
protocol: A particular protocol to be used with the
socket, or 0 if the caller does not wish to specify a
protocol.

#include <winsock.h>
SOCKET socket (

int af, int type, int protocol);

11

Accept a connection on a socket

s: A descriptor identifying a socket which is listening for
connections after a listen().
addr: An optional pointer to a buffer which receives the address of
the connecting entity, as known to the communications layer. The
exact format of the addr argument is determined by the address
family established when the socket was created.
addrlen: An optional pointer to an integer which contains the length
of the address addr.

#include <winsock.h>
SOCKET accept (

SOCKET s, struct sockaddr FAR * addr,
int FAR * addrlen);

6

12

struct sockaddr

From winsock.h (Windows) or
/usr/include/sys/socket.h (UNIX)

/*
* Structure used by kernel to store most
* addresses.
*/

struct sockaddr {
u_char sa_len; /* total length */
u_char sa_family; /* address family */
char sa_data[14]; /* actually longer; address value*/

};
#define SOCK_MAXADDRLEN 255 /* longest possible addresses */

13

Associate a local address
with a socket

s: A descriptor identifying an unbound socket.
name: The address to assign to the socket.
namelen: length of the name

struct sockaddr {
u_short sa_family;
char sa_data[14];
};

#include <winsock.h>
int bind (

SOCKET s, const struct sockaddr FAR * name,
int namelen);

7

14

Internet address family

In the Internet address family, a name consists of several
components.
For SOCK_DGRAM and SOCK_STREAM, the name consists of three parts:

a host address, the protocol number (set implicitly to UDP or TCP,
respectively), and a port number which identifies the application.
If an application does not care what address is assigned to it, it may specify an
Internet address equal to INADDR_ANY, a port equal to 0, or both.
If the Internet address is equal to INADDR_ANY, any appropriate network
interface will be used; this simplifies application programming in the presence
of multi-homed hosts.
If the port is specified as 0, the Windows Sockets implementation will assign a
unique port to the application with a value between 1024 and 5000.

The application may use getsockname() after bind() to learn the address that
has been assigned to it

getsockname() will not necessarily fill in the Internet address until the socket is
connected; several Internet addresses may be valid if the host is multi-homed.

15

Example: bind to an reserved port
SOCKADDR_IN sin;
SOCKET s;
u_short alport = IPPORT_RESERVED; /* 1024 */
sin.sin_family = AF_INET;
sin.sin_addr.s_addr = 0;
for (;;) {

sin.sin_port = htons(alport);
if (bind(s, (LPSOCKADDR)&sin, sizeof (sin)) == 0) {

/* it worked */
}
if (GetLastError() != WSAEADDRINUSE) {

/* fail */
}
alport--;
if (alport == IPPORT_RESERVED/2) {
/* fail--all unassigned reserved ports are in use.*/
}

}

8

16

Close a socket

This function closes a socket.
releases the socket descriptor s, so that further references to s will fail
with the error WSAENOTSOCK.
If this is the last reference to the underlying socket, the associated
naming information and queued data are discarded.

Semantics influenced by socket options:

#include <winsock.h>
int closesocket (SOCKET s);

YesGracefulNon-zeroSO_LINGER

NoHardZeroSO_LINGER

NoGracefulDon‘t careSO_DONTLINGER

Wait for close?Type of closeIntervalOption

17

Establish a connection to a peer

s: A descriptor identifying an unconnected socket.
name: The name of the peer to which the socket is to be connected.
namelen: The length of the name.
create a connection to the specified foreign association. The
parameter s specifies an unconnected datagram or stream socket

#include <winsock.h>
int connect (SOCKET s,

const struct sockaddr * name,
int namelen);

9

18

Establish a socket to listen for
incoming connection

s: A descriptor identifying a bound, unconnected socket.

backlog: The maximum length to which the queue of pending connections
may grow.

typically used by servers that could have more than one connection request
at a time:

if a connection request arrives with the queue full, the client will receive an
error with an indication of WSAECONNREFUSED

#include <winsock.h>
int listen (SOCKET s, int backlog);

19

Receiving data from a socket
(connection-oriented)

s: A descriptor identifying a connected socket.

buf: A buffer for the incoming data.

len: The length of buf.

flags: Specifies the way in which the call is made.

#include <winsock.h>
int recv (SOCKET s,

char * buf, int len, int flags);

10

20

Receive a datagram and store the
source address (connectionless)

s: A descriptor identifying a bound socket.
buf: A buffer for the incoming data.
len: The length of buf.
flags: Specifies the way in which the call is made.
from: An optional pointer to a buffer which will hold the source
address upon return.
fromlen: An optional pointer to the size of the from buffer.

#include <winsock.h>
int recvfrom (SOCKET s,

char * buf, int len, int flags,
struct sockaddr * from, int * fromlen);

21

Determine the status of one or
more sockets, waiting if necessary.

nfds:
This argument is ignored and included only for the sake of compatibility.

readfds:
An optional pointer to a set of sockets to be checked for readability.

writefds:
An optional pointer to a set of sockets to be checked for writability

exceptfds:
An optional pointer to a set of sockets to be checked for errors.

timeout:
The maximum time for select() to wait, or NULL for blocking operation.

#include <winsock.h>
int select (int nfds, fd_set * readfds,

fd_set * writefds, fd_set * exceptfds,
const struct timeval * timeout);

11

22

Send data on a connected socket
(connection-oriented)

s: A descriptor identifying a connected socket.

buf: A buffer containing the data to be transmitted.

len: The length of the data in buf.

flags: Specifies the way in which the call is made.

#include <winsock.h>
int send (SOCKET s,
const char * buf, int len, int flags);

23

Send data to a specific destination
(connectionless)

s: A descriptor identifying a socket.
buf: A buffer containing the data to be transmitted.
len: The length of the data in buf.
flags: Specifies the way in which the call is made.
to: An optional pointer to the address of the target socket.
tolen: The size of the address in to.

#include <winsock.h>
int sendto (SOCKET s,

const char * buf, int len, int flags,
const struct sockaddr * to, int tolen);

12

24

Further Reading

Mark E. Russinovich and David A. Solomon,
Microsoft Windows Internals, 4th Edition, Microsoft
Press, 2004;

Windows Sockets (from pp. 791)

Abraham Silberschatz, Peter B. Galvin, Operating
System Concepts, John Wiley & Sons, 6th Ed., 2003;

Chapter 15 - Distributed System Structures

W. Richard Stevens, Unix Network Programming,
Prentice Hall Software Series, 1990; (The Book)

Chapter 6 - Berkeley Sockets

