
1

Windows Operating System Internals - by David A. Solomon and Mark E. Russinovich with Andreas Polze

Unit OS5: Memory Management
5.3. Virtual Address Translation

3

Roadmap for Section 5.3.

From virtual to physical addresses

Address space layout

Address translation

Page directories, page tables

Page faults, invalid page table entries

Page frame number database

Recap: structuring of the memory manager

2

4

Virtual Memory - Concepts

Application always references “virtual
addresses”
Hardware and software translates, or maps,
virtual addresses to physical
Not all of an application’s virtual address space
is in physical memory at one time...

...But hardware and software fool the application
into thinking that it is
The rest is kept on disk, and is brought into physical
memory automatically as needed

5

Virtual address descriptors (VADs)

Memory manager uses demand paging algorithm
Lazy evaluation is also used to construct page tables

Reserved vs. commited memory
Even for commited memory, page table are constructed on demand

Memory manager maintains VAD structures to keep track of reserved
virtual addresses

Self-balancing binary tree
VAD store:

range of addresses being reserved;
whether range will be shared or private;
Whether child process can inherit contents of the range
Page protection applied to pages within the address range

3

6

Mapping Virtual
to Physical Pages

Successive page table entries
describe successive virtual pages,
pointing to “scattered” (i.e. not
physically contiguous) physical pages

virtual
pages

page
table
entries

00000000

7FFFFFFF

C0000000

C1000000

80000000

FFFFFFFF

Physical Memory

7

Address Translation - Mapping
virtual addresses to physical
memory

Mapping via page table entries

Indirect relationship between virtual
pages and physical memory

Virtual
pages

Physical memory

Page table
entries

10 10 12
2231 21 11 012

Page directory
index

Page table
index

Byte index

x86:

user

system

user

system

4

8

Shared and Private Pages

00000000

7FFFFFFF

C0000000

C1000000

80000000

FFFFFFFF

For shared pages, multiple
processes’ PTEs point to
same physical pages

Process A Process B
Physical
Memory

9

2 GB
User

process
space

2 GB
System
Space

32-bit x86 Address Space

3 GB
User

process
space

1 GB
System Space

Default 3 GB user space

32-bits = 4 GB

5

10

8192 GB
(8 TB)
User

process
space

6657 GB
System
Space

64-bit Address Spaces

7152 GB
(7 TB)
User

process
space

6144 GB
System
Space

x64 Itanium

64-bits = 17,179,869,184 GB
x64 today supports 48 bits virtual = 262,144 GB
IA-64 today support 50 bits virtual = 1,048,576 GB

11

Increased Limits in 64-bit
Windows

Itanium x64 x86

User Address Space 7152 GB 8192 GB 2-3 GB

Page file limit 16 TB 16 TB 4095 MB

PAE: 16 TB

Max page file space 256 TB 256 TB ~64 GB

System PTE Space 128 GB 128 GB 1.2 GB

System Cache 1 TB 1 TB 960 MB

Paged pool 128 GB 128 GB 470-650 MB

Non-paged pool 128 GB 128 GB 256 MB

6

12

Code: EXE/DLLs
Data: EXE/DLL

static storage, per-
thread user mode

stacks, process
heaps, etc.

00000000

7FFFFFFF

Code:
NTOSKRNL, HAL,
drivers
Data: kernel stacks,

File system cache
Non-paged pool,
Paged pool

FFFFFFFF

80000000

Process page tables,
hyperspace

C0000000

32-bit x86 Virtual
Address Space

2 GB per-process
Address space of one process is not
directly reachable from other processes

2 GB system-wide
The operating system is loaded here, and
appears in every process’s address
space

The operating system is not a process
(though there are processes that do
things for the OS, more or less in
“background”)

3 GB user space option & Address
Windowing Extensions (AWE)
described later

Unique per
process,

accessible in
user or kernel

mode

System wide,
accessible

only in kernel
mode

Per process,
accessible only

in kernel
mode

13

User mode space
per process

00000000 00000000

E0000000 00000000

FFFFFF00 00000000
FFFFFFFF FFFFFFFF

System space page
tables

64-bit ia64 (Itanium) Virtual Address
Space

64 bits = 2^64 = 17 billion GB
(16 exabytes) total

Diagram NOT to scale!

7152 GB default per-process

Pages are 8 Kbytes

All pointers are now 64 bits
wide (and not the same size
as a ULONG)

6FC 00000000

Kernel mode
per process

1FFFFF00 00000000

Process
page tables

20000000 00000000

Session space

Session space
page tables

System space

3FFFFF00 00000000

E0000600 00000000

7

14

Address Translation 32-bit Windows
Hardware Support Intel x86

Intel x86 provides two levels of address translation

Segmentation (mandatory, since 8086)

Paging (optional, since 80386)

Segmentation: first level of address translation

Intel: logical address (selector:offset) to linear address (32 bits)

Windows virtual address is Intel linear address (32 bits)

Paging: second level of address translation

Intel: linear address (32 bits) to physical address

Windows: virtual address (32 bits) to physical address

Physical address: 32 bits (4 GB) all Windows versions, 36 bits (64 GB) PAE

Page size:

4 kb since 80386 (all Windows versions)

4 MB since Pentium Pro (supported in NT 4, Windows 2000/XP/2003)

15

Intel x86 Segmentation

Index TI=0 RPL
315 2 1 0Intel

Logical
address

Segment Selector
31 0

Offset

:

Global Descriptor
Table (GDT)

Limit=0xfffffAccess

Base Address = 0

Limit=0xfffffAccess

Base Address = 0
+

Intel
Linear
Addresses

Windows Virtual
Addresses 0

0xffffffff

8

16

Intel x86 Paging – Address
Translation

10 10 12
2231 21 11 0

Intel Linear
Address 12

4Mb PDE

4Kb PDE

Windows Virtual
Address

Page directory
1024x4byte entries
(one per process)

cr 3

Physical address

PTE

Page table
1024 entries

Physical Address

operand

4 Kb page

operand

4 Mb page

22 bit
offset

4kb page
frame

4MB page frame

Physical Memory

0

1

2

3

n

Page Frame
Number Database

Windows-PFN
Database

Page tables are created on demand

17

Interpreting a Virtual Address

31 22 21 12 11 0

10 bits 10 bits 12 bits

Page table
selector

Page table
entry selector Byte within page

47 39 38 30 29 21 20 12 11 0

9 bits 9 bits 12 bits

Page table
selector

Page table
entry selector Byte within page

x86 32-bit

x64 64-bit (48-bit in today’s processors)

Page directory
pointer selector

Page map level
4 selector

9 bits9 bits

9

18

Windows Virtual Memory Use
Performance Counters

Ratio of committed bytes to
commit limit

MmTotalCommittedPages
/ MmTotalCommitLimit

Memory: %Commited
Bytes in Use

Amount of memory (in bytes) that
can be committed without
increasing size of paging file

MmTotalCommit-LimitMemory: Commit
Limit

Amount of committed private
address space that has a backing
store

MmTotalCommitedPagesMemory: Committed
Bytes

DescriptionSystem VariablePerformance Counter

19

x86 Virtual Address Translation

Page table
selector

Page table
entry selector Byte within page

index

Page Directory
(one per process, 1024 entries)

index

Page Tables
(up to 512 per process,

plus up to 512 system-wide)

physical
page number
(“page frame
number” or

“PFN”)

Physical Pages
(up to 2^20)

1

CR3
physical
address

2

3

4

5

6

7

8

9

10

11

12

PFN 0

31 0

10

20

x64 Virtual Address Translation

Page table
selector

Page table
entry selector

Page Map
Level 4

Page
Tables

Physical Pages
(up to 2^40)

1

2

3

4

5

6

7

8

9

10

11

12

PFN 0

Byte within pagePage dir
pointer

Page map
Level 4

Page
Directories

Page
Directory
Pointers

CR3

48 0

21

Byte within pageVirtual page number

Virtual Address Translation

The hardware converts each valid virtual
address to a physical address

Physical page number Byte within page

Page
Directory

Page
Tables

virtual address

physical address

Translation
Lookaside

Buffer

a cache of recently-
used page table entries

Address translation (hardware)

if page
not valid...

page fault
(exception,
handled by
software)

11

22

Itanium Address Translation
3 level page table (vs 2 on x86)

43 bit virtual addressing
44 bit physical addressing

Two TLBs
Instruction TLB – translates instruction addresses
Data TLB – translates data addresses

Each have OS-managed translation registers and hardware
managed translation cache

OS can insert TLB entries
OS decides which slots when inserting into translation registers
Hardware decides when inserting into translation cache

Itanium: 96 instruction translation cache entries; 128 data translation
cache entries

23

Mapping Process vs. System-
Space Addresses

“Upper half” of page directory for
every process contains same entries
(with a few exceptions), which point
to system-wide page tables
exceptions are for page tables that
map the process page tables (not
shown)Page Directories

(one per process)
Sets of per-process

page tables (up to 512
per process)

System-wide page tables
(up to 512 persystem)

12

24

Page Directory and Page Table
Entries

Screen snapshot from:
Kernel debugger !pte command on
randomly-selected virtual addresses

KDx86> !pte fea80000
FEA80000 - PDE at C0300FE8 PTE at C03FAA00

contains 0040C063 contains 0002D063
pfn 0040C DA--KWV pfn 0002D DA--KWV

KDx86> !pte 10000
00010000 - PDE at C0300000 PTE at C0000040

contains 002AF067 contains FFFFF480
pfn 002AF DA--UWV not valid

Proto: VAD
Protect: 4

KDx86> !pte 50000
00050000 - PDE at C0300000 PTE at C0000140

contains 002AF067 contains 0011A080
pfn 002AF DA--UWV not valid

PageFile 0
Offset 11a
Protect: 4

1

3
2

98764 5

A

A

virtual address of PD
Entry or PT Entry

contents of PDE or PTE
interpreted contents
Page Frame Number

(== physical page
number) of Page
Table

Page Frame Number
(== physical page
number) for valid
page

D = Dirty (modified
since made valid)

A = Accessed (recently)
KW = Kernel mode

writable
V = Valid bit
Where pager can find

contents of an invalid
page

1

3
2

4

5

6

7
8

9
A

25

Translating a virtual address:

1. Memory management HW locates page directory for current
process (cr3 register on Intel)

2. Page directory index directs to requested page table
3. Page table index directs to requested virtual page
4. If page is valid, PTE contains physical page number

(PFN – page frame number) of the virtual page
• Memory manager fault handler locates invalid pages and tries to

make them valid
• Access violation/bug check if page cannot be brought in (prot. fault)

5. When PTE points to valid page, byte index is used to locate
address of desired data

13

26

Page directories & Page tables

Each process has a single page directory (phys. addr. in
KPROCESS block, at 0xC0300000, in cr3 (x86))

cr3 is re-loaded on inter-process context switches
Page directory is composed of page directory entries (PDEs)
which describe state/location of page tables for this process

Page tables are created on demand

x86: 1024 page tables describe 4GB

Each process has a private set of page tables
System has one set of page tables

System PTEs are a finite resource: computed at boot time
HKLM\System...\Control\SessionManager\SystemPages

27

System and
process-private page tables

On process creation, system space page directory entries point to existing
system page tables
Not all processes have same view of system space (after allocation of new
page tables)

PTE 0 PDE 0

PDE 511

PDE n Sys PTE 0

Sys PTE n

PTE 0PDE 0

PDE 511

PDE nProcess 1
page tables

System
page tables

Process 1
page directory

Process 2
page directory

private

PDE 512PDE 512

Process 2
page tables

14

28

Page Table Entries

Page tables are array of Page Table Entries (PTEs)
Valid PTEs have two fields:

Page Frame Number (PFN)
Flags describing state and protection of the page

Page frame number VU P Cw Gi L D A Cd Wt O W

Res (writable on MP Systems)
Res
Res
Global
Res (large page if PDE)
Dirty
Accessed
Cache disabled
Write through
Owner
Write (writable on MP Systems)

valid

Reserved bits
are used only
when PTE is
not valid

31 12 0

29

PTE Status and Protection Bits
(Intel x86 only)

Uniproc: Indicates whether page is read/write or read-only;
Multiproc: ind. whether page is writeable/write bit in res. bit

Write

Disables caching of writes; immediate flush to diskWrite through
Indicates whether translation maps to page in phys. Mem.Valid

Indicates whether user-mode code can access the page of
whether the page is limited to kernel mode access

Owner

Indicates that PDE maps a 4MB page (used to map kernel)Large page

Translation applies to all processes
(a translation buffer flush won‘t affect this PTE)

Global
Page has been written toDirty
Disables caching for that pageCache disabled
Page has been readAccessed

Meaning on x86Name of Bit

15

30

Translation Look-Aside Buffer
(TLB)

Address translation requires two lookups:
Find right table in page directory
Find right entry in page table

Most CPU cache address translations
Array of associative memory: translation look-aside buffer (TLB)
TLB: virtual-to-physical page mappings of most recently used pages

Virtual page #: 5Virtual page #: 17

Virtual page #: 64

Virtual page #: 17

Virtual page #: 7

Virtual page #: 65

Page frame 290

Invalid

Page frame 1004

Invalid

Page frame 801

Simultaneous
read and compare

31

Page Fault Handling

Reference to invalid page is called a page fault

Kernel trap handler dispatches:
Memory manager fault handler (MmAccessFault) called

Runs in context of thread that incurred the fault

Attempts to resolve the fault or
raises exception

Page faults can be caused by variety of conditions

Four basic kinds of invalid Page Table Entries (PTEs)

16

32

In-Paging I/O due to Access Faults
Accessing a page that is not resident in memory but on disk in page
file/mapped file

Allocate memory and read page from disk into working set

Occurs when read operation must be issued to a file to satisfy page fault
Page tables are pageable -> additional page faults possible

In-page I/O is synchronous
Thread waits until I/O completes
Not interruptible by asynchronous procedure calls

During in-page I/O: faulting thread does not own critical memory
management synchronization objects
Other threads in process may issue VM functions, but:

Another thread could have faulted same page: collided page fault
Page could have been deleted (remapped) from virtual address space
Protection on page may have changed
Fault could have been for prototype PTE and page that maps
prototype PTE could have been out of working set

33

Other reasons for access faults

Accessing page that is on standby or modified list
Transition the page to process or system working set

Accessing page that has no committed storage
Access violation

Accessing kernel page from user-mode
Access violation

Writing to a read-only page
Access violation

17

34

Reasons for access faults (contd.)

Writing to a guard page
Guard page violation (if a reference to a user-mode stack,
perform automatic stack expansion)

Writing to a copy-on-write page
Make process-private copy of page and replace original in process or
system working set

Referencing a page in system space that is valid but not in the
process page directory

(if paged pool expanded after process directory was created)

Copy page directory entry from master system page directory structure
and dismiss exception

On a multiprocessor system: writing to valid page that has not yet
been written to

Set dirty bit in PTE

35

Invalid PTEs and their structure

Page file: desired page resides in paging file
in-page operation is initiated

Page file offset Protection
Page
File No 0

Transition
Prototype
Valid31 12 11 10 9 5 4 1 0

• Demand Zero: pager looks at zero page list;
if list is empty, pager takes list from standby list and
zeros it;
PTE format as shown above, but page file number and
offset are zeros

18

36

Invalid PTEs and their structure
(contd.)

Transition: the desired page is in memory on either the standby, modified,
or modified-no-write list

Page is removed from the list and added to working set

Page Frame Number Protection1

Transition
Prototype
Protection
Cache disable
Write through
Owner
Write
Valid

31 12 11 10 9 5 4 1 0

1 0

23

• Unknown: the PTE is zero, or the page table does not yet exist
- examine virtual address space descriptors (VADs) to see

whether this virtual address has been reserved
- Build page tables to represent newly committed space

37

Prototype PTEs
Software structure to manage potentially shared pages

Array of prototype PTEs is created as part of section object
(part of segment structure)

First access of a page mapped to a view of a section object:
memory manager uses prototype PTE to fill in real PTE used for
address translation;

Reference count for shared pages in PFN database

Shared page valid:

process & prototype PTE point to physical page

Page invalidated:

process PTE points to prototype PTE

Prototype PTE describes 5 states for shared page:

Active/valid, Transition, Demand zero, Page file, Mapped file

Layer between page table and page frame database

19

38

Prototype PTEs for shared pages –
the bigger picture

Two virtual pages in a mapped view
First page is valid; 2nd page is invalid and in page file

Prototype PTE contains exact location
Process PTE points to prototype PTE

PFN Valid PFN n

Invalid - points
to prototype

PTE
Valid PFN n

Invalid – in
page file

Segment
structure

PFN n

PFN n

PTE address

Share
count=1

PFN entryPhysical
memory

Prototype page
table

Page table

Page directory

39

Further Reading

Mark E. Russinovich and David A. Solomon,
Microsoft Windows Internals, 4th Edition,
Microsoft Press, 2004.

Chapter 7 - Memory Management
Address Translation (from pp. 425)

Shared Memory and Mapped Files (from pp. 386)

20

40

Source Code References

Windows Research Kernel sources
\base\ntos\mm – Memory manager

\base\ntos\inc\mm.h – additional structure
definitions

