Unit OS4: Scheduling and Dispatch

4.5. Advanced Windows Thread Scheduling

Windows Operating System Internals - by David A. Solomon and Mark E. Russinovich with Andreas Polze

Roadmap for Section 4.5.

® Thread Scheduling Details

©® Quantum Stretching

® CPU Starvation Avoidance

©® Multiprocessor Scheduling

® Windows Server 2003 Enhancements

Thread Scheduling States (2000, XP)

preempt preemption,
/ \ quantum end

voluntary
switch

Ready = thread eligible to be scheduled to run
Standby = thread is selected to run on CPU

A

Ready (1)

Transition (6)

wait resolved
after kernel
stack made
pageable

Other Thread States

©® Transition
® Thread was in a wait entered from user mode for 12 seconds or more
® System was short on physical memory

©® Balance set manager (t.b.d.) marked the thread’s kernel stack as
pageable (preparatory to “outswapping” the thread’s process)

® Later, the thread’s wait was satisfied, but...

©® _.Thread can't become Ready until the system allocates a
nonpageable kernel stack; it is in the “transition” state until then

© |nitiate
©® Thread is “under construction” and can’t run yet
® Standby

® One processor has selected a thread for execution on another
processor

® Terminate

©® Thread has executed its last code, but can’t be deleted until all
handles and references to it are closed (object manager)

Scheduling Scenarios
Quantum Detalils

® Quantum internally stored as “3 * number of clock ticks”

@ Default quantum is 6 on Professional, 36 on Server
©® Thread->Quantum field is decremented by 3 on every clock tick
® Process and thread objects have a Quantum field

@ Process quantum is simply used to initialize thread quantum for all threads in
the process

©® Quantum decremented by 1 when you come out of a wait

® So that threads that get boosted after /0O completion won't keep running and
never experiencing quantum end

@ Prevents I/O bound threads from getting unfair preference over CPU bound
threads

Scheduling Scenarios
Quantum Details

® When Thread->Quantum reaches zero
(or less than zero):

©® you've experienced quantum end

® Thread->Quantum = Process->Quantum; /I restore
guantum

©® for dynamic-priority threads, this is the only thing that restores
the quantum

O for real-time threads, quantum is also restored upon
preemption

® Interval timer interrupts when previous IRQL >= 2:

©® are not charged to the current thread’s “privileged” time

©® but do cause the thread “remaining quantum” counter to be
decremented

Quantum Stretching
(favoring foreground applications)

© If normal-priority process owns the foreground window, its threads
may be given longer quantum
©® Set by Control Panel / System applet / Performance tab

® Stored in ...\System\CurrentControlSet\Control\PriorityControl
Win32PrioritySeparation =0, 1, or 2

® New behavior with 4.0 (formerly implemented via priority shift)

System Properhies
Startups/Shutdawn | Hardware Profiles | User Profiles
General Performance | E rwiranmert

Application Performance

Select the performance boost for the foreground application.

Screen snapshot from: lamst None . . _.J b awimum

Control Panel | System |
Performance tab

Quantum Stretching

©® Resulting quantum:
® “Maximum” = 6 ticks
© (middle) = 4 ticks
® “None” = 2 ticks

Running | Ready

8 {111

©® Quantum stretching does not happen on Server
® Quantum on Server is always 12 ticks

Quantum Selection

©® As of Windows 2000, can choose short or long quantums
(e.g. for Terminal Servers)

©® NT Server 4.0 was always the same, regardless of slider bar

Windows 2000: Windows XP: EEatliultil=Ne/ N 2IX
Performance Dptions 21x| [MEEErEE] Advanced :
Processor scheduling
—Application response By default, the computer is set to use a greater share of
o processor time to run your programs.
Optimize performance for: Adjust for best performance of

@ programs (O Background services
" Background services

Memory usage

8y default, the computer i set to use a greater share of

- Wirtual memory memery to run your programs.
Total paging file size For all drives: 125 ME Adjust for best performance of;
@ Programs O System cache

Virtual memery

A paging fie is an area on the hard disk that Windows uses as

Change. .. |
ifit were RAM,

CK I Cancel | Total paging flle size for all drives: 1000 MB

Screen snapshot from: i
Control Panel | System | Advanced tab | Performance

Quantum Control

© Finer grained quantum control can be achieved by modifying
HKLM\System\CurrentControlSet\Control
\PriorityControl\Win32PrioritySeparation

4 2 0

© 6 bit value

Short vs. Long Variable vs. Fixed Quantum Boost

® Short vs. Long

0,3 default (short for Pro, long for Server)
1 long
2 short
& Variable vs. Fixed
0,3 default (yes for Pro, no for Server)
1 yes
2 no
® Quantum Boost
0 fixed (overrides above setting)
1 double quantum of foreground threads
2,3 triple quantum of foreground threads

Controlling Quantum with Jobs

® |Ifa process is a member Scheduling | Quantum units
of a job, quantum can be class
adjusted by setting the 0 6
“Scheduling Class” 1 12
® Only applies if process is 5 18
higher then Idle priority
class 3 24
© Only applies if system 4 30
running with fixed
guantums (the default on 5 36
. Servers) 6 42
Values are 0-9 7 48
® .
5 is default 8 54
9 60
11
Prlorlty BOOStIng Common boost values
. e . . (see NTDDK.H)
® After an I/O: specified by device driver 1: disk, CD-ROM, parallel,
© loCompleteRequest(Irp, PriorityBoost) Video
© After a wait on executive event or 2: serial, network, named
semaphore pipe, mailslot
6: keyboard or mouse
@ Boost value of 1 is used for these objects 8: sound
© Server 2003: for critical sections and pushlocks:
) \{\é?iting thread is boosted to 1 more than setting thread’s priority (max boost is to
©® Setting thread loses boost (lock convoy issue)
©® After any wait on a dispatcher object by a thread in the foreground
process:
© Boost value of 2
® XP/2003: boost is lost after one full quantum
® Goal: improve responsiveness of interactive apps
(e}

GUI threads that wake up to process windowing input (e.g. windows

messages) get a boost of 2

©® This is added to the current, not base priority
@ Goal: improve responsiveness of interactive apps

12

CPU Starvation Avoidance

© Balance Set Manager system thread looks for “starved”
threads

© This is a thread, running at priority 16
© Wakes up once per second and examines Ready queues

© Looks for threads that have been Ready for 300 clock ticks
(approximate 4 seconds on a 10ms clock)

© Attempts to resolve “priority inversions” (high priority thread
(12 in diagram) waits on something locked by a lower
thread (4), which can't run because of a middle priority
CPU-bound thread (7)),
but not deterministically (no priority inheritance)

@ Priority is boosted to 15 (14 prior to NT 4 SP3)
® Quantum is doubled on Win2000/XP and set to 4 on 2003

@ At quantum end, returns to previous priority (no gradual decay) and normal
guantum

© Scans up to 16 Ready threads per priority level each pass

@

Boosts up to 10 Ready threads per pass

© Like all priority boosts, does not apply in the real-time range
(priority 16 and above)

13

Multiprocessor Scheduling

® Threads can run on any CPU, unless specified otherwise
© Tries to keep threads on same CPU (“soft affinity”)
©® Setting of which CPUs a thread will run on is called “hard
affinity”
® Fully distributed (no “master processor”)

©® Any processor can interrupt another processor to schedule a
thread

® Scheduling database:

® Pre-Windows Server 2003: single system-wide list of ready
gueues

® Windows Server 2003: per-CPU ready queues

14

Hard Affinity

©® Affinity is a bit mask where each bit corresponds to a CPU number
@ Hard Affinity specifies where a thread is permitted to run
©® Defaults to all CPUs

© Thread affinity mask must be subset of process affinity mask, which in turn
must be a subset of the active processor mask

(=) windows NT Task Manager o =[]
. File - Options - View Help - - e
® Functions to change: spplizatons Piocesses | Pefamarce |
@ SetThreadAffinityMask, mags Hame | PID| CPU] CPU Tiwe | Mem Dsage =]
. . desk. 17200 0:00:00 BE K
SetProcessAffinityMask, gtk e 1w oo 56K
- . JETSTAT EXE 178 = PP Seme
SetInformationJobObject ismanes 177 ([locesral ity x
0 I h . - ﬂi:hiifexe }gg g:zﬂa‘;ﬁf;ﬁmﬁ s;tllng controls which CPUs the process il
Tools to change: [T v
32 ohe: LI ol =1 S il =R =R e
© Task Manager or Process Explorer . 2 Flean Fleus Foeig e
. . THSKMGR EXE 277 1= e =GRl IS [GRIE I= | CRU 26
©® Right click on process and choose | owaz e E |l 2 R e e
“Set Affinity” e Er N e =T 2P = I e =i
B e 0 || ElcRUs Flceuie Flosuel Floeuzs
9 Psexec-a bebe b | 20 | (ECRUE R [eplie R ol
A el F s F el Flcel
15

Hard Affinity

©® Can also set an image affinity mask
© See “Imagecfg” tool in Windows 2000 Server Resource Kit Supplement 1
® E.g. Imagecfg —a 2 xyz.exe will run xyz on CPU 1
©® Can also set “uniprocessor only”: sets affinity mask to one processor
©® Imagecfg —u Xxyz.exe
© System chooses 1 CPU for the process
@ Rotates round robin at each process creation

@ Useful as temporary workaround for multithreaded synchronization bugs that
appear on MP systems

® NOTE: Setting hard affinity can lead to threads’ getting less CPU time than
they normally would

@ More applicable to large MP systems running dedicated server apps

B Also, OS may in some cases run your thread on CPUs other than your hard
affinity setting (flushing DPCs, setting system time)

® Thread “system affinity” vs “user affinity”

16

Soft Processor Affinity

8 Every thread has an “ideal processor”

® System selects ideal processor for first thread in process (round robin across CPUS)

® Next thread gets next CPU relative to the process seed

® Can override with:

SetThreadldealProcessor (

HANDLE hThread, /l handle to the thread to be changed
DWORD dwldealProcessor); // processor number

© Hard affinity changes update ideal processor settings

® Used in selecting where a thread runs next (see next slides)

® For Hyperthreaded systems, new Windows API in Server 2003 to allow apps to optimize

@ GetlogicalProcessorinformation
)

For NUMA systems, new Windows APIs to allow applications to optimize:
& Use GetProcessAffinityMask to get list of processors
@ Then GetNumaProcessorNode to get node # for each CPU

@ Or call GetNumaHighestNodeNumber and then GetNumaNodeProcessorMask to get the
processor #s for each node

17

Windows 2000/XP Dispatcher

Database

Thread 1 Thread 2 Thread 3 Thread 4
Ready Queues
31
0 MP Systems Only
Ready Summary Active Processor Mask Idle Summary Mask
e ——_—
31 (or 63) 0 31 (or 63) 0 31 (or 63) 0

18

Choosing a CPU for a Ready
Thread (Windows 2000 & XP)

® When a thread becomes ready to run (e.g. its wait completes, or it is just
beginning execution), need to choose a processor for it to run on

© First, it sees if any processors are idle that are in the thread’s hard affinity
mask:

@ |If its “ideal processor” is idle, it runs there

9@ Else, if the previous processor it ran on is idle, it runs there

@ Else if the current processor is idle, it runs there

© Else it picks the highest numbered idle processor in the thread’s affinity mask
©® If no processors are idle:

9 |f the ideal processor is in the thread’s affinity mask, it selects that

@ Else if the the last processor is in the thread’s affinity mask, it selects that

© Else it picks the highest numbered processor in the thread’s affinity mask

© Finally, it compares the priority of the new thread with the priority of the
thread running on the processor it selected (if any) to determine whether or
not to perform a preemption

19

Selecting a Thread to Run on a
CPU (Windows 2000 & XP)

System needs to choose a thread to run on a specific CPU at:
© At quantum end
© When a thread enters a wait state
© When a thread removes its current processor from its hard affinity mask
© When a thread exits

Starting with the first thread in the highest priority non-empty ready queue, it
scans the queue for the first thread that has the current processor in its hard
affinity mask and:

© Ran last on the current processor, or

© Has its ideal processor equal to the current processor, or
© Has been in its Ready queue for 3 or more clock ticks, or
© Has a priority >=24

If it cannot find such a candidate, it selects the highest priority thread that can
run on the current CPU (whose hard affinity includes the current CPU)

© Note: this may mean going to a lower priority ready queue to find a candidate

20

10

L]

Windows Server 2003
Dispatcher Database

Thread 1——Thread 2 |—Thread 3 Thread 4
CPU 0 Ready Queues CPU 1 Ready Queues
31 31
0 0
Ready Summary Ready Summary
31 0

Deferred Ready Queue

31 0
Deferred Ready Queue

L]

21

Server 2003 Enhancements

Threads always go into the ready queue of their ideal processor

Instead of locking the dispatcher database to look for a candidate to
run, per-CPU ready queue is checked first (first grabs PRCB
spinlock)

® |f a thread has been selected to run on the CPU, does the context
swap

©® Else begins scan of other CPU’s ready queues looking for a thread to
run

@ This scan is done OUTSIDE the dispatcher lock
@ Just acquires CPU PRCB lock

Dispatcher lock still acquired to wait or unwait a thread and/or
change state of a dispatcher object

Bottom line: dispatcher lock is now held for a MUCH shorter time

22

11

Thread Scheduling States (Server 2003)

preempt
Deferred
Ready (7)

voluntary
Transition (6)

switch

preemption,
quantum end

23

Server 2003 Enhancements

© |dle processor selection further refined to:

@ |f a NUMA system: if there are idle CPUs in the
node containing the thread’s ideal processor,
reduce to that set

@ |f a hyperthreaded system: if one of the idle
processors is a physical processor with all logical
processors idle, reduce to that set

® Then try to eliminate idle CPUs that are sleeping

@ |f thread ran last on a member of the set, pick that
CPU

© Else pick lowest numbered CPU in remaining set

24

12

“Affinity Collisions”

©® Highest-priority n threads may not be Running if thread affinity
interferes

® NT guarantees the highest-priority thread will be Running
© But lower-priority n-1 Ready threads may not be...
©® .. .because scheduler will not “move” running threads among CPUs

® Example: Threads became Ready in order A, B, C

Thread C:
Current priority 6
Affinity mask 01

Thread A: Thread B:
CPU 1 | Current priority 4 CPU 0 | Current priority 8
Affinity mask 10 Affinity mask 11

25

Further Reading

® Mark E. Russinovich and David A. Solomon, Microsoft Windows
Internals, 4th Edition, Microsoft Press, 2004.

©® Chapter 6 - Processes, Thread, and Jobs
(from pp. 289)

Thread Scheduling (from pp. 325)
Scheduling Scenarios (from pp. 345)
Multiprocessor Systems (from pp. 357)
Job Objects (from pp. 368)

2 2 o O

26

13

Source Code References

@ Windows Research Kernel sources
©® \base\ntos\ke\i386, \base\ntos\ke\amd64:

©® Cixswap.asm — Context Swap
© Clockint.asm — Clock Interrupt Handler
© \base\ntos\ke
© procobj.c - Process object
® thredobj.c, thredsup.c — Thread object
9 |dsched.c — Idle scheduler
©® Wait.c — quantum management, wait resolution
©® Waitsup.c — dispatcher exit (deferred ready queue)

©® \base\ntos\inc\ke.h — structure/type definitions

27

14

