
1

Windows Operating System Internals - by David A. Solomon and Mark E. Russinovich with Andreas Polze

Unit OS4: Scheduling and Dispatch
4.5. Advanced Windows Thread Scheduling

2

Roadmap for Section 4.5.

Thread Scheduling Details

Quantum Stretching

CPU Starvation Avoidance

Multiprocessor Scheduling

Windows Server 2003 Enhancements

2

3

Thread Scheduling States (2000, XP)

Ready (1) Running (2)

Waiting (5)

Ready = thread eligible to be scheduled to run
Standby = thread is selected to run on CPU

voluntary
switch

preemption,
quantum end

Init (0)

Terminate (4)

Transition (6)

wait resolved
after kernel
stack made

pageable

Standby (3)
preempt

4

Other Thread States
Transition

Thread was in a wait entered from user mode for 12 seconds or more
System was short on physical memory
Balance set manager (t.b.d.) marked the thread’s kernel stack as
pageable (preparatory to “outswapping” the thread’s process)
Later, the thread’s wait was satisfied, but...
...Thread can’t become Ready until the system allocates a
nonpageable kernel stack; it is in the “transition” state until then

Initiate
Thread is “under construction” and can’t run yet

Standby
One processor has selected a thread for execution on another
processor

Terminate
Thread has executed its last code, but can’t be deleted until all
handles and references to it are closed (object manager)

3

5

Scheduling Scenarios
Quantum Details

Quantum internally stored as “3 * number of clock ticks”
Default quantum is 6 on Professional, 36 on Server

Thread->Quantum field is decremented by 3 on every clock tick
Process and thread objects have a Quantum field

Process quantum is simply used to initialize thread quantum for all threads in
the process

Quantum decremented by 1 when you come out of a wait
So that threads that get boosted after I/O completion won't keep running and
never experiencing quantum end
Prevents I/O bound threads from getting unfair preference over CPU bound
threads

6

Scheduling Scenarios
Quantum Details

When Thread->Quantum reaches zero
(or less than zero):

you’ve experienced quantum end
Thread->Quantum = Process->Quantum; // restore
quantum
for dynamic-priority threads, this is the only thing that restores
the quantum
for real-time threads, quantum is also restored upon
preemption

Interval timer interrupts when previous IRQL >= 2:
are not charged to the current thread’s “privileged” time
but do cause the thread “remaining quantum” counter to be
decremented

4

7

Quantum Stretching
(favoring foreground applications)

If normal-priority process owns the foreground window, its threads
may be given longer quantum

Set by Control Panel / System applet / Performance tab

Stored in …\System\CurrentControlSet\Control\PriorityControl
Win32PrioritySeparation = 0, 1, or 2

New behavior with 4.0 (formerly implemented via priority shift)

Screen snapshot from:
Control Panel | System |
Performance tab

8

Quantum Stretching

Resulting quantum:
“Maximum” = 6 ticks
(middle) = 4 ticks
“None” = 2 ticks

Quantum stretching does not happen on Server
Quantum on Server is always 12 ticks

8

Running Ready

5

9

Quantum Selection
As of Windows 2000, can choose short or long quantums
(e.g. for Terminal Servers)

NT Server 4.0 was always the same, regardless of slider bar

Screen snapshot from:
Control Panel | System | Advanced tab | Performance

Windows 2000: Windows XP:

10

Quantum Control
Finer grained quantum control can be achieved by modifying

HKLM\System\CurrentControlSet\Control
\PriorityControl\Win32PrioritySeparation

6 bit value

Short vs. Long
0,3 default (short for Pro, long for Server)
1 long
2 short

Variable vs. Fixed
0,3 default (yes for Pro, no for Server)
1 yes
2 no

Quantum Boost
0 fixed (overrides above setting)
1 double quantum of foreground threads
2,3 triple quantum of foreground threads

Short vs. Long Quantum BoostVariable vs. Fixed

024

6

11

Controlling Quantum with Jobs
If a process is a member
of a job, quantum can be
adjusted by setting the
“Scheduling Class”

Only applies if process is
higher then Idle priority
class
Only applies if system
running with fixed
quantums (the default on
Servers)

Values are 0-9
5 is default

Quantum unitsScheduling
class

609
548
487
426
365
304
243
182
121
60

12

Priority Boosting
After an I/O: specified by device driver

IoCompleteRequest(Irp, PriorityBoost)

After a wait on executive event or
semaphore

Boost value of 1 is used for these objects
Server 2003: for critical sections and pushlocks:

Waiting thread is boosted to 1 more than setting thread’s priority (max boost is to
13)
Setting thread loses boost (lock convoy issue)

After any wait on a dispatcher object by a thread in the foreground
process:

Boost value of 2
XP/2003: boost is lost after one full quantum

Goal: improve responsiveness of interactive apps

GUI threads that wake up to process windowing input (e.g. windows
messages) get a boost of 2

This is added to the current, not base priority
Goal: improve responsiveness of interactive apps

Common boost values
(see NTDDK.H)
1: disk, CD-ROM, parallel,
Video
2: serial, network, named
pipe, mailslot
6: keyboard or mouse
8: sound

7

13

12

4

7

Wait

Run

Ready

CPU Starvation Avoidance
Balance Set Manager system thread looks for “starved”
threads

This is a thread, running at priority 16
Wakes up once per second and examines Ready queues
Looks for threads that have been Ready for 300 clock ticks
(approximate 4 seconds on a 10ms clock)
Attempts to resolve “priority inversions” (high priority thread
(12 in diagram) waits on something locked by a lower
thread (4), which can’t run because of a middle priority
CPU-bound thread (7)),
but not deterministically (no priority inheritance)

Priority is boosted to 15 (14 prior to NT 4 SP3)
Quantum is doubled on Win2000/XP and set to 4 on 2003

At quantum end, returns to previous priority (no gradual decay) and normal
quantum

Scans up to 16 Ready threads per priority level each pass

Boosts up to 10 Ready threads per pass

Like all priority boosts, does not apply in the real-time range
(priority 16 and above)

14

Multiprocessor Scheduling

Threads can run on any CPU, unless specified otherwise
Tries to keep threads on same CPU (“soft affinity”)

Setting of which CPUs a thread will run on is called “hard
affinity”

Fully distributed (no “master processor”)
Any processor can interrupt another processor to schedule a
thread

Scheduling database:
Pre-Windows Server 2003: single system-wide list of ready
queues

Windows Server 2003: per-CPU ready queues

8

15

Functions to change:
SetThreadAffinityMask,
SetProcessAffinityMask,
SetInformationJobObject

Tools to change:
Task Manager or Process Explorer

Right click on process and choose
“Set Affinity”

Psexec -a

Hard Affinity
Affinity is a bit mask where each bit corresponds to a CPU number

Hard Affinity specifies where a thread is permitted to run
Defaults to all CPUs

Thread affinity mask must be subset of process affinity mask, which in turn
must be a subset of the active processor mask

16

Hard Affinity
Can also set an image affinity mask

See “Imagecfg” tool in Windows 2000 Server Resource Kit Supplement 1
E.g. Imagecfg –a 2 xyz.exe will run xyz on CPU 1

Can also set “uniprocessor only”: sets affinity mask to one processor
Imagecfg –u xyz.exe

System chooses 1 CPU for the process
Rotates round robin at each process creation

Useful as temporary workaround for multithreaded synchronization bugs that
appear on MP systems

NOTE: Setting hard affinity can lead to threads’ getting less CPU time than
they normally would

More applicable to large MP systems running dedicated server apps

Also, OS may in some cases run your thread on CPUs other than your hard
affinity setting (flushing DPCs, setting system time)

Thread “system affinity” vs “user affinity”

9

17

Soft Processor Affinity
Every thread has an “ideal processor”

System selects ideal processor for first thread in process (round robin across CPUs)
Next thread gets next CPU relative to the process seed
Can override with:

SetThreadIdealProcessor (

HANDLE hThread, // handle to the thread to be changed
DWORD dwIdealProcessor); // processor number

Hard affinity changes update ideal processor settings
Used in selecting where a thread runs next (see next slides)

For Hyperthreaded systems, new Windows API in Server 2003 to allow apps to optimize
GetLogicalProcessorInformation

For NUMA systems, new Windows APIs to allow applications to optimize:
Use GetProcessAffinityMask to get list of processors

Then GetNumaProcessorNode to get node # for each CPU

Or call GetNumaHighestNodeNumber and then GetNumaNodeProcessorMask to get the
processor #s for each node

18

MP Systems Only

Windows 2000/XP Dispatcher
Database

0

Process

Thread 1 Thread 2 Thread 3 Thread 4

31
Ready Queues

Ready Summary

31 (or 63) 0

Idle Summary Mask

31 (or 63) 0

Process

Active Processor Mask

31 (or 63) 0

10

19

Choosing a CPU for a Ready
Thread (Windows 2000 & XP)

When a thread becomes ready to run (e.g. its wait completes, or it is just
beginning execution), need to choose a processor for it to run on
First, it sees if any processors are idle that are in the thread’s hard affinity
mask:

If its “ideal processor” is idle, it runs there
Else, if the previous processor it ran on is idle, it runs there
Else if the current processor is idle, it runs there
Else it picks the highest numbered idle processor in the thread’s affinity mask

If no processors are idle:
If the ideal processor is in the thread’s affinity mask, it selects that
Else if the the last processor is in the thread’s affinity mask, it selects that
Else it picks the highest numbered processor in the thread’s affinity mask

Finally, it compares the priority of the new thread with the priority of the
thread running on the processor it selected (if any) to determine whether or
not to perform a preemption

20

Selecting a Thread to Run on a
CPU (Windows 2000 & XP)

System needs to choose a thread to run on a specific CPU at:
At quantum end
When a thread enters a wait state
When a thread removes its current processor from its hard affinity mask
When a thread exits

Starting with the first thread in the highest priority non-empty ready queue, it
scans the queue for the first thread that has the current processor in its hard
affinity mask and:

Ran last on the current processor, or
Has its ideal processor equal to the current processor, or
Has been in its Ready queue for 3 or more clock ticks, or
Has a priority >=24

If it cannot find such a candidate, it selects the highest priority thread that can
run on the current CPU (whose hard affinity includes the current CPU)

Note: this may mean going to a lower priority ready queue to find a candidate

11

21

Windows Server 2003
Dispatcher Database

0

Process

Thread 1 Thread 2 Thread 3 Thread 4

31
CPU 0 Ready Queues

Ready Summary

31 0

Process

0

31
CPU 1 Ready Queues

Ready Summary

31 0
Deferred Ready Queue Deferred Ready Queue

22

Server 2003 Enhancements

Threads always go into the ready queue of their ideal processor

Instead of locking the dispatcher database to look for a candidate to
run, per-CPU ready queue is checked first (first grabs PRCB
spinlock)

If a thread has been selected to run on the CPU, does the context
swap

Else begins scan of other CPU’s ready queues looking for a thread to
run

This scan is done OUTSIDE the dispatcher lock

Just acquires CPU PRCB lock

Dispatcher lock still acquired to wait or unwait a thread and/or
change state of a dispatcher object

Bottom line: dispatcher lock is now held for a MUCH shorter time

12

23

Deferred
Ready (7) Running (2)

Waiting (5)

voluntary
switch

preemption,
quantum end

Init (0)

Terminate (4)

Transition (6)

Standby (3)
preempt

Ready (1)

Thread Scheduling States (Server 2003)

24

Server 2003 Enhancements

Idle processor selection further refined to:
If a NUMA system: if there are idle CPUs in the
node containing the thread’s ideal processor,
reduce to that set
If a hyperthreaded system: if one of the idle
processors is a physical processor with all logical
processors idle, reduce to that set
Then try to eliminate idle CPUs that are sleeping
If thread ran last on a member of the set, pick that
CPU

Else pick lowest numbered CPU in remaining set

13

25

“Affinity Collisions”
Highest-priority n threads may not be Running if thread affinity
interferes
NT guarantees the highest-priority thread will be Running

But lower-priority n-1 Ready threads may not be…
…because scheduler will not “move” running threads among CPUs

Example: Threads became Ready in order A, B, C

CPU 1 CPU 0
Thread A:
Current priority 4
Affinity mask 10

Thread B:
Current priority 8
Affinity mask 11

Thread C:
Current priority 6
Affinity mask 01

26

Further Reading

Mark E. Russinovich and David A. Solomon, Microsoft Windows
Internals, 4th Edition, Microsoft Press, 2004.

Chapter 6 - Processes, Thread, and Jobs
(from pp. 289)

Thread Scheduling (from pp. 325)

Scheduling Scenarios (from pp. 345)

Multiprocessor Systems (from pp. 357)

Job Objects (from pp. 368)

14

27

Source Code References

Windows Research Kernel sources
\base\ntos\ke\i386, \base\ntos\ke\amd64:

Ctxswap.asm – Context Swap

Clockint.asm – Clock Interrupt Handler

\base\ntos\ke
procobj.c - Process object

thredobj.c, thredsup.c – Thread object

Idsched.c – Idle scheduler

Wait.c – quantum management, wait resolution

Waitsup.c – dispatcher exit (deferred ready queue)

\base\ntos\inc\ke.h – structure/type definitions

