

Scheduling Scenarios Quantum Details

Quantum internally stored as "3 * number of clock ticks"
 Default quantum is 6 on Professional, 36 on Server

- Thread->Quantum field is decremented by 3 on every clock tick
- Process and thread objects have a Quantum field
 - Process quantum is simply used to initialize thread quantum for all threads in the process
- Quantum decremented by 1 when you come out of a wait
 - So that threads that get boosted after I/O completion won't keep running and never experiencing quantum end
 - Prevents I/O bound threads from getting unfair preference over CPU bound threads

Scheduling Scenarios Quantum Details When Thread->Quantum reaches zero (or less than zero): you've experienced quantum end Thread->Quantum = Process->Quantum; // restore quantum for dynamic-priority threads, this is the only thing that restores the quantum • for real-time threads, quantum is also restored upon preemption Interval timer interrupts when previous IRQL >= 2: • are not charged to the current thread's "privileged" time but do cause the thread "remaining quantum" counter to be decremented

Quantum Selec	ction
 As of Windows 2000, can of (e.g. for Terminal Servers) NT Server 4 0 was always 	choose short or long quantums
Windows 2000: Windows 2000:	Indows XP: Performance Options
Performance Options	Visual Effects Advanced
Application response Optimize performance for: © Applications © Background gervices	Processor scheduling By default, the computer is set to use a greater share of processor time to run your programs. Adjust for best performance of:
Virtual memory Total paging file size for all drives: 125 MB Change OK Cancel	By defail, the computer is set to use a greater share of memory to run your programs. Adjust for best performance of: ③ Programs ○ System cache Virtual memory A paging file is an area on the hard disk that Windows uses as rif it were RAM. Total paging file size for all drives: 1000 MB Change
Screen snapshot from: Control Panel System Advanced tab Performance	

C	Quantum Control						
Finer g	rained quantum HKLM\System\C \Priori	control can be a currentControlSe tyControl\Win32	achieved by mod et\Control PrioritySeparatio	lifying on			
● 6 b	6 bit value		2		0		
	Short vs. Long	y Variat	ole vs. Fixed	Quantum Boost			
Short v	s. Long 0,3 1 2	default (sho long short	default (short for Pro, long for Server) long short				
Variabl	e vs. Fixed 0,3 1 2	default (yes yes no	default (yes for Pro, no for Server) yes no				
Quantu	im Boost 0 1 2,3	fixed (overri double quai triple quanti	fixed (overrides above setting) double quantum of foreground threads triple quantum of foreground threads				

Controlling Quantum with Jobs

- If a process is a member of a job, quantum can be adjusted by setting the "Scheduling Class"
 - Only applies if process is higher then Idle priority class
 - Only applies if system running with fixed quantums (the default on Servers)
- Values are 0-9
 - 5 is default

Scheduling class	Quantum units
0	6
1	12
2	18
3	24
4	30
5	36
6	42
7	48
8	54
9	60

Hard Affinity Can also set an image affinity mask See "Imagecfg" tool in Windows 2000 Server Resource Kit Supplement 1 • E.g. Imagecfg -a 2 xyz.exe will run xyz on CPU 1 0 Can also set "uniprocessor only": sets affinity mask to one processor Imagecfg -u xyz.exe • System chooses 1 CPU for the process Rotates round robin at each process creation 0 Useful as temporary workaround for multithreaded synchronization bugs that appear on MP systems NOTE: Setting hard affinity can lead to threads' getting less CPU time than 0 they normally would 0 More applicable to large MP systems running dedicated server apps Also, OS may in some cases run your thread on CPUs other than your hard 0 affinity setting (flushing DPCs, setting system time) Thread "system affinity" vs "user affinity"

Choosing a CPU for a Ready Thread (Windows 2000 & XP)

- When a thread becomes ready to run (e.g. its wait completes, or it is just beginning execution), need to choose a processor for it to run on
- First, it sees if any processors are idle that are in the thread's hard affinity mask:
 - If its "ideal processor" is idle, it runs there
 - Else, if the previous processor it ran on is idle, it runs there
 - Else if the current processor is idle, it runs there
 - Else it picks the highest numbered idle processor in the thread's affinity mask
- If no processors are idle:
 - If the ideal processor is in the thread's affinity mask, it selects that
 - Else if the the last processor is in the thread's affinity mask, it selects that
 - Else it picks the highest numbered processor in the thread's affinity mask
- Finally, it compares the priority of the new thread with the priority of the thread running on the processor it selected (if any) to determine whether or not to perform a preemption

Selecting a Thread to Run on a CPU (Windows 2000 & XP)

- System needs to choose a thread to run on a specific CPU at:
 - At quantum end
 - When a thread enters a wait state
 - When a thread removes its current processor from its hard affinity mask
 - When a thread exits
- Starting with the first thread in the highest priority non-empty ready queue, it scans the queue for the first thread that has the current processor in its hard affinity mask and:
 - Ran last on the current processor, or
 - Has its ideal processor equal to the current processor, or
 - Has been in its Ready queue for 3 or more clock ticks, or
 - Has a priority >=24
- If it cannot find such a candidate, it selects the highest priority thread that can run on the current CPU (whose hard affinity includes the current CPU)
 - Note: this may mean going to a lower priority ready queue to find a candidate

Source Code References

Windows Research Kernel sources

- \base\ntos\ke\i386, \base\ntos\ke\amd64:
 - Ctxswap.asm Context Swap
 - Clockint.asm Clock Interrupt Handler
- \base\ntos\ke
 - procobj.c Process object
 - thredobj.c, thredsup.c Thread object
 - Idsched.c Idle scheduler
 - Wait.c quantum management, wait resolution
 - Waitsup.c dispatcher exit (deferred ready queue)
- \base\ntos\inc\ke.h structure/type definitions