
1

Windows Operating System Internals - by David A. Solomon and Mark E. Russinovich with Andreas Polze

Unit OS4: Scheduling and Dispatch
4.3. Windows Process and Thread Internals

2

Roadmap for Section 4.3.

Windows Process and Thread Internals

Thread Block, Process Block

Flow of Process Creation

Thread Creation and Deletion

Process Crashes

Windows Error Reporting

2

3

Windows Process and Thread
Internals
Data Structures for each

process/thread:
Executive process block
(EPROCESS)

Executive thread block
(ETHREAD)

Win32 process block

Process environment block

Thread environment block

Process
environment

block

Thread
environment

block

Process block
(EPROCESS)

Thread block
(ETHREAD)

Win32 process block

Handle table

...

Process address space

System address space

4

Process

Container for an address space and threads

Associated User-mode Process Environment Block (PEB)

Primary Access Token

Quota, Debug port, Handle Table etc

Unique process ID

Queued to the Job, global process list and Session list

MM structures like the WorkingSet, VAD tree, AWE etc

3

5

Thread
Fundamental schedulable entity in the system
Represented by ETHREAD that includes a KTHREAD
Queued to the process (both E and K thread)
IRP list
Impersonation Access Token
Unique thread ID
Associated User-mode Thread Environment Block (TEB)
User-mode stack
Kernel-mode stack
Processor Control Block (in KTHREAD) for CPU state when not
running

6

Processes & Threads
Internal Data Structures

Process
Object

Handle Table

VAD VAD VAD

object

object

Virtual Address Space Descriptors

Access Token

Thread Thread Thread . . .
Access Token

See kernel debugger
commands:

dt (see next slide)
!process
!thread
!token
!handle
!object

4

Quota Block

Exit Status

Primary Access Token

Process ID

Parent Process ID

Exception Port

Debugger Port

Handle Table

Process Environment Block

Create and Exit Time

Next Process Block

Image File Name

Process Priority Class

Memory Management Information

EPROCESS

Kernel Process Block (or PCB)

Image Base Address

Win32 Process Block

Process Block Layout

Dispatcher Header

Processor Affinity

Kernel Time

User Time

Inwwap/Outswap List Entry

Process Spin Lock

Resident Kernel Stack Count

Process Base Priority

Default Thread Quantum

Process State

Thread Seed

Disable Boost Flag

Process Page Directory

KTHREAD . . .

8

ETHREAD

Create and Exit Time

Process ID

Thread Start Address

Impersonation Information

LPC Message Information

EPROCESS

Access Token

KTHREAD

Timer Information
Pending I/O Requests

Total User Time

Total Kernel Time

Thread Scheduling Information

Synchronization Information

List of Pending APCs

Timer Block and Wait Blocks

List of Objects Being Waiting On

System Service Table

TEB

KTHREAD

Thread Local Storage

Kernel Stack Information

Dispatcher Header

Trap Frame

Thread Block

5

9

Process Environment Block

Mapped in
user space

Image loader,
heap
manager,
Windows
system DLLs
use this info

View with !peb
or dt nt!_peb

Image base address
Module list

Thread-local storage data
Code page data

Critical section time-out
Number of heaps

Heap size info

GDI shared handle table
OS version no info
Image version info

Image process affinity mask

Process
heap

10

Thread Environment Block

User mode data
structure

Context for
image loader
and various
Windows DLLs

View with !teb
or dt nt!_teb

Exception list
Stack base
Stack limit

Thread ID
Active RPC handle

LastError value
Count of owned crit. sect.

Current locale
User32 client info

GDI32 info
OpenGL info

TLS array

Subsyst. TIB
Fiber info

PEB

Winsock data

6

11

Flow of CreateProcess()

1. Open the image file (.EXE) to be executed inside the process
2. Create Windows NT executive process object
3. Create initial thread (stack, context, Win NT executive thread

object)
4. Notify Windows subsystem of new process so that it can set up

for new proc.& thread
5. Start execution of initial thread (unless CREATE_SUSPENDED

was specified)
6. In context of new process/thread: complete initialization of

address space (load DLLs) and begin execution of the program

12

The main Stages Windows follows
to create a process

Open EXE and
create selection

object

Create NT
process object

Create NT
thread object

Notify Windows
subsystem

Set up for new
process and

thread

Start execution
of the initial

thread

Return to caller

Final
process/image

initialization

Start execution
at entry point to

image

Creating process

Windows subsystem
New process

7

13

CreateProcess: some notes

CreationFlags: independent bits for priority class
-> NT assigns lowest-priority class set

Default priority class is normal
unless creator has priority class idle

If real-time priority class is specified and
creator has insufficient privileges:
priority class high is used

Caller‘s current desktop is used
if no desktop is specified

14

Opening the image to be executed

What kind of
application is it?

Run CMD.EXE Run NTVDM.EXE Use .EXE directly

Run NTVDM.EXERun POSIX.EXERun OS2.EXE

Win16 (not supported
on 64-bit Windows)

Windows

OS/2 1.x MS-DOS .EXE,
.COM, or .PIF

MS-DOS .BAT
or .CMD

POSIX

Win32
(on 64-bit
Windows)

Use .EXE
directly
(via special
Wow64
support)

8

15

If executable has no Windows
format...

CreateProcess uses Windows „support image“

No way to create non-Windows processes directly
OS2.EXE runs only on Intel systems

Multiple MS-DOS apps may share virtual dos machine

.BAT of .CMD files are interpreted by CMD.EXE

Win16 apps may share virtual dos machine (VDM)
Flags: CREATE_SEPARATE_WOW_VDM

CREATE_SHARED_WOW_VDM
Default: HKLM\System...\Control\WOW\DefaultSeparateVDM

Sharing of VDM only if apps run on same desktop under same security

Debugger may be specified under (run instead of app !!)
\Software\Microsoft\WindowsNT\CurrentVersion\ImageFileExecutionOptions

16

Process Creation - next Steps...

CreateProcess has opened Windows executable and created a
section object to map in proc‘s addr space

Now: create executive process object via NtCreateProcess
Set up EPROCESS block
Create initial process address space (page directory, hyperspace
page, working set list)
Create kernel process block (set inital quantum)
Conlude setup of process address space (VM, map NTDLL.DLL, map
lang support tables, register process: PsActiveProcessHead)
Set up Process Environment Block
Complete setup of executive process object

9

17

Further Steps...(contd.)
Create Initial Thread and Its Stack and Context

NtCreateThread; new thread is suspended until CreateProcess returns

Notify Windows Subsystem about new process
KERNEL32.DLL sends message to Windows subsystem including:

Process and thread handles
Entries in creation flags
ID of process‘s creator
Flag describing Windows app (CSRSS may show startup cursor)

Windows: duplicate handles (inc usage count), set priority class, bookkeeping

allocate CSRSS proc/thread block, init exception port, init debug port
Show cursor (arrow & hourglass), wait 2 sec for GUI call, then wait 5 sec
for window

18

CreateProcess: final steps
Process Initialization in context of new process:

Lower IRQL level (dispatch -> Async.Proc.Call. level)
Enable working set expansion
Queue APC to exec LdrInitializeThunk in NTDLL.DLL
Lower IRQL level to 0 – APC fires,

Init loader, heap manager, NLS tables, TLS array, crit. sect.
Structures
Load DLLs, call DLL_PROCESS_ATTACH func

Debuggee: all threads are suspended
Send msg to proc‘s debug port
(Windows creates CREATE_PROCESS_DEBUG_INFO event)

Image begins execution in user-mode (return from trap)

10

19

Process Rundown Sequence
1. DLL notification

unless TerminateProcess used

2. All handles to executive and kernel objects are closed
3. Terminate any active threads
4. Process’s exit code changes from STILL_ACTIVE to the

specified exit code

BOOL GetExitCodeProcess(
HANDLE hProcess,
LPDWORD lpdwExitCode);

5. Process object & thread objects become signaled
6. When handle and reference counts to process object == 0,

process object is deleted

20

Creation of a Thread

1. The thread count in the process object is incremented.

2. An executive thread block (ETHREAD) is created and
initialized.

3. A thread ID is generated for the new thread.

4. The TEB is set up in the user-mode address space of
the process.

5. The user-mode thread start address is stored in the
ETHREAD.

11

21

Creation of a Thread
6. KeInitThread is called to set up the KTHREAD block.

The thread’s initial and current base priorities are set to the process’s base
priority, and its affinity and quantum are set to that of the process.

KeInitThread allocates a kernel stack for the thread and initializes the machine-
dependent hardware context for the thread, including the context, trap, and
exception frames.

The thread’s context is set up so that the thread will start in kernel mode in
KiThreadStartup.

Finally, KeInitThread sets the thread’s state to Initialized and returns to
PspCreateThread.

7. Any registered systemwide thread creation notification routines are
called.

8. The thread’s access token is set to point to the process access
token,

an access check is made to determine whether the caller has the right to
create the thread.

9. Finally, the thread is readied for execution.

22

Thread Rundown Sequence
1. DLL notification

unless TerminateThread was used

2. All handles to Windows User and GDI objects are closed
3. Outstanding I/Os are cancelled
4. Thread stack is deallocated
5. Thread’s exit code changes from STILL_ACTIVE to the specified exit

code
BOOL GetExitCodeThread(

HANDLE hThread,
LPDWORD lpdwExitCode);

6. Thread kernel object becomes signaled
7. When handle and reference counts == 0, thread object deleted
8. If last thread in process, process exits

12

23

Start of Thread Wrapper
All threads in all Windows processes appear to have one of just two
different start addresses, regardless of the .EXE running

One for thread 0 (start of process wrapper), the other for all other
threads (start of thread wrapper)

These “wrapper” functions are what Process Viewer shows as
Thread Start Address for Windows apps
Start of process & start of thread wrappers have same behavior

Provides default exception handling, access to debugger, etc.

Forces thread exit when thread function returns

To find “real” Windows start address, use TLIST <processname> (or
Kernel Debugger !thread command)

24

Windows Start of Process/Thread
Function(conceptual model)

void BaseProcessStart [or BaseThreadStart - basically the same] (
LPTHREAD_START_ROUTINE lpStartAddr,
LPVOID lpvThreadParm)

{
__try {

DWORD dwThreadExitCode = lpStartAddr(lpvThreadParm);
ExitThread(dwThreadExitCode);

}
__except(UnhandledExceptionFilter(

GetExceptionInformation())) {
ExitProcess(GetExceptionCode());

}
}

13

25

Windows Unhandled Exception Filter
if process has a debugger attached

return EXCEPTION_CONTINUE_SEARCH
if AUTO=0 { // run debugger automatically?

Display message box; // no - ask user what to do
if(clicked OK)

ExitProcess();
}

// either AUTO=1, or (AUTO=0 and user clicked CANCEL),
// so run debugger
GetProfileString("AEdebug","debugger",...);
hEvent = CreateEvent(...);
hProcess = CreateProcess(...); // Create debugger

- pass process id, event to signal
WaitForMultipleObjects([hEvent, hProcess]);
return EXCEPTION_CONTINUE_SEARCH;

Implication: you can connect a debugger (VC++ or WinDbg)
to a running process

C:\> msdev -p pid

26

Process Crashes (Windows 2000)
Registry defines behavior for
unhandled exceptions

HKLM\Software\Microsoft
\Windows NT\CurrentVersion
\AeDebug

Debugger=filespec of debugger to run
on app crash

Auto 1=run debugger immediately
0=ask user first

Default on retail
system is
Auto=1; Debugger=DRWTSN32.EXE

Default with VC++ is
Auto=0, Debugger=MSDEV.EXE

14

27

Process Crashes (Windows XP & Windows
Server 2003)

On XP & Server 2003, when an unhandled exception
occurs:

System first runs DWWIN.EXE
DWWIN creates a process microdump and XML file and offers the option
to send the error report

Then runs debugger (default is Drwtsn32.exe)

28

Windows Error Reporting

Configurable with
System Properties-
>Advanced->Error
Reporting

HKLM\SOFTWARE
\Microsoft\PCHealth
\ErrorReporting

Configurable with group
policies

HKLM\SOFTWARE
\Policies\Microsoft
\PCHealth

15

29

Further Reading

Mark E. Russinovich and David A. Solomon, Microsoft
Windows Internals, 4th Edition, Microsoft Press, 2004.

Chapter 6 - Processes, Thread, and Jobs
(from pp. 289)

Process Internals (from pp. 289)

Flow of Create Process (from pp. 300)

Thread Internals (from pp. 313)

30

Source Code References

Windows Research Kernel sources
\base\ntos\ke

procobj.c - Process object

thredobj.c, thredsup.c – Thread object

\base\ntos\ke\i386, amd64 – thredini.c –
architecture specific thread initialization

\base\ntos\inc\ke.h, ps.h – structure/type definitions

