

Process Concept

- An operating system executes programs:
 - Batch system jobs
 - Time-shared systems user programs or tasks
- Process a program in execution
 - Process execution must progress sequentially
- A process includes:
 - CPU state (one or multiple threads)
 - Text & data section
 - Resources such as open files, handles, sockets
- Traditionally, processes used to be units of scheduling (i.e. no threads)
 - However, like most modern operating systems, Windows schedules threads
 - Our discussion assumes thread scheduling

Optimization Criteria

- CPU scheduling uses heuristics to manage the tradeoffs among contradicting optimization criteria.
- Schedulers are optimized for certain workloads
 - Interactive vs. batch processing
 - I/O-intense vs. compute-intense
- Common optimization criteria:
 - Maximize CPU utilization
 - Maximize throughput
 - Minimize turnaround time
 - Minimize waiting time
 - Minimize response time

Rationale:

- Multiprogramming maximizes CPU utilization
- Thread execution experiences cycles of compute- and I/O-bursts
- Scheduler should consider CPU burst distribution

- Long-term scheduler (or job scheduler)
 - Selects which processes with their threads should be brought into the ready queue
 - Takes memory management into consideration (swapped-out processes)
 - Controls degree of multiprogramming
 - Invoked infrequently, may be slow
- Short-term scheduler (or CPU scheduler)
 - Selects which threads should be executed next and allocates CPU
 - Invoked frequently, must be fast
- Windows has no dedicated long-term scheduler

Dispatcher

- Dispatcher module gives control of the CPU to the thread selected by the short-term scheduler; this involves:
 - switching context
 - switching to user mode
 - jumping to the proper location in the user program to restart that program
- Dispatch latency time it takes for the dispatcher to stop one thread and start another running.
- Windows scheduling is event-driven
 - No central dispatcher module in the kernel

Scheduling Algorithms: Priority Scheduling

- A priority number (integer) is associated with each thread
- The CPU is allocated to the thread with the highest priority
 - Preemptive
 - Non-preemptive

Process Creation

- Parent process creates children processes, which create other processes, forming a tree of processes
 - Processes start with one initial thread
- Resource sharing models
 - Parent and children share all resources
 - Children share subset of parent's resources
 - Parent and child share no resources
- Execution
 - Parent's and children's' threads execute concurrently
 - Parent waits until children terminate

Prozess-ID	Prozessname	Threads	▼ % CPU
0	kernel_task	32	1,40
102	WindowServer	1	0,00
195	RowerPoint	2	30.90
1874	Microsoft Word	1	15 40
358	Aktivitäts-Anzeige	2	11,90
361	nmTool	1	2.90
1898	M Bildschirmfoto	3	9,90
356	Terminal	4	1.90
364	v login	1	0.00
366	v tcsh	1	0.00
415	v su	1	0,00
416	tcsh	1	0.00

Further Reading

- Abraham Silberschatz, Peter B. Galvin, Operating System Concepts, John Wiley & Sons, 6th Ed., 2003;
 - Chapter 4 Processes
 - Chapter 5 Threads
 - Chapter 6 CPU Scheduling
- Mark E. Russinovich and David A. Solomon, Microsoft Windows Internals, 4th Edition, Microsoft Press, 2004.
 - Chapter 6 Processes, Thread, and Jobs (from pp. 289)

41