Unit OS3: Concurrency

3.1. Concurrency, Critical Sections, Semaphores

Windows Operating System Internals - by David A. Solomon and Mark E. Russinovich with Andreas Polze

Roadmap for Section 3.1.

® The Critical-Section Problem

® Software Solutions

® Synchronization Hardware

® Semaphores

® Synchronization in Windows & Linux




The Critical-Section Problem

@ n threads all competing to use a shared
resource (i.e.; shared data)

©® Each thread has a code segment, called critical
section, in which the shared data is accessed

@ Problem:
Ensure that when one thread is executing in its
critical section, no other thread is allowed to
execute in its critical section

Solution to Critical-Section Problem

1. Mutual Exclusion

® Only one thread at a time is allowed into its critical section, among all
threads that have critical sections for the same resource or shared
data.

® A thread halted in its non-critical section must not interfere with other
threads.

2. Progress
® A thread remains inside its critical section for a finite time only.
® No assumptions concerning relative speed of the threads.

3. Bounded Waiting

® |t must no be possible for a thread requiring access to a critical
section to be delayed indefinitely.

® When no thread is in a critical section, any thread that requests entry
must be permitted to enter without delay.




Initial Attempts to Solve Problem

® Only 2 threads, T,and T,
® General structure of thread T, (other thread T)
do {
lenter section |

critical section

]exit section \

reminder section
} while (1);

® Threads may share some common variables to
synchronize their actions.

First Attempt: Algorithm 1

® Shared variables - initialization
int turn = 0;
® turn == 1 = T, can enter its critical section
® Thread T,
do {
while (turn != 1) ;
critical section
turn = j;
reminder section
} while (1);
® Satisfies mutual exclusion, but not progress




Second Attempt: Algorithm 2

® Shared variables - initialization
int flag[2]; flag[0] = flag[1] = O;

® flag[i] == 1 = T, can enter its critical section
® Thread T,
do {
flag[i] = 1;

while (flag[j] == 1) ;
critical section

flag[i] = O;
remainder section

} while(l);
© Satisfies mutual exclusion, but not progress requirement.

Third Attempt: Algorithm 3
(Peterson’s Algorithm - 1981)

® Shared variables of algorithms 1 and 2 - initialization:

int flag[2]; flag[0] = flag[1] = O;
int turn = 0O;

® Thread T,

do {

flag[i] = 1;
turn = j;
while ((flag[j] == 1) && turn == j) ;

critical section
flag[i] = O;
remainder section
T} while (1);
©® Solves the critical-section problem for two threads.




Dekker’'s Algorithm (1965)

® This is the first correct solution proposed for the
two-thread (two-process) case.

® Originally developed by Dekker in a different
context, it was applied to the critical section
problem by Dijkstra.
@ Dekker adds the idea of a favored thread and allows

access to either thread when the request is
uncontested.

@ When there is a conflict, one thread is favored, and
the priority reverses after successful execution of
the critical section.

10

Dekker’s Algorithm (contd.)

®Shared variables - initialization:

int flag[2]; flag[0] = flag[1] = O;
int turn = 0;
®Thread T,

do {
flag[i] = 1;

while (flag[i] )
if (turn == j) {

flag[i] = O;
while (turn == j);
flag[i] = 1;
¥
critical section
turn = j;
flag[Il] = 0;;

remainder section
} while (1);

11




Bakery Algorithm
(Lamport 1979)

A Solution to the Critical Section problem for n threads

@ Before entering its critical section, a thread receives a
number. Holder of the smallest number enters the critical
section.

@ If threads T, and T, receive the same number,
if i <J, then T, is served first; else T; is served first.

® The numbering scheme generates numbers in
monotonically non-decreasing order;
e, 1,1,1,2,3,3,3,4,4,5...

12

Bakery Algorithm

® Notation “<" establishes lexicographical order
among 2-tuples (ticket #, thread id #)

(a,b)<(cd)ifa<corifa==candb<d

max (ag,..., a,,) ={k| k>gfori=0,..., n-1}
® Shared data

int choosing[n];

int number[n]; - the ticket

Data structures are initialized to O

13




Bakery Algorithm

do {
choosing[i] = 1;
number[i] = max(number[0],number[1] ...,number[n-1]) + 1;

choosing[i] = 0;
for G = 0; j <n; j+) {
while (choosing[j] == 1) ;
while ((number[j] !'= 0) &&
((number[j1.3) “7<°7 (number[i].,i)));

critical section
number[i] = O;
remainder section
} while (1);

14

Mutual Exclusion - Hardware Support

® Interrupt Disabling
® Concurrent threads cannot overlap on a uniprocessor

® Thread will run until performing a system call or interrupt
happens

® Special Atomic Machine Instructions
©® Test and Set Instruction - read & write a memory location
©® Exchange Instruction - swap register and memory location
® Problems with Machine-Instruction Approach
©® Busy waiting
©® Starvation is possible
©® Deadlock is possible

15




Synchronization Hardware

® Test and modify the content of a word atomically

boolean TestAndSet(boolean &target) {
boolean rv = target;
target = true;

return rv;

}

16

Mutual Exclusion with Test-and-Set

® Shared data:
boolean lock = false;

® Thread T,

do {
while (TestAndSet(lock)) ;
critical section
lock = false;
remainder section

17




Synchronization Hardware

©® Atomically swap two variables.

void Swap(boolean &a, boolean &b) {
boolean temp = a;
a = b;
b
}

temp;

18

Mutual Exclusion with Swap

® Shared data (initialized to 0):
int lock = 0O;

® Thread T,
int key;
do {
key = 1;
while (key == 1) Swap(lock,key);
critical section
lock = 0;
remainder section

19




Semaphores

©® Semaphore S - integer variable
® can only be accessed via two atomic operations
wait (S):
while (S <= 0);
S--;

signal (S):

S++;

20

Critical Section of n Threads

® Shared data:

semaphore mutex; //initially mutex = 1

® Thread T;:

do {
wait(mutex);
critical section

signal (mutex);
remainder section
} while (1);

21

10



Semaphore Implementation

® Semaphores may suspend/resume threads
©® Avoid busy waiting
@ Define a semaphore as a record

typedef struct {

int value;
struct thread *L;
} semaphore;

® Assume two simple operations:
©® suspend() suspends the thread that invokes it.
©® resume(T) resumes the execution of a blocked thread T.

22

Implementation

® Semaphore operations now defined as
wait(S):
S.value--;
if (S.value < 0) {
add this thread to S.L;

suspend();
}
signal(S):
S.value++;

if (S.value <= 0) {

remove a thread T from S.L;
resume(T);

23

11



Semaphore as a General
Synchronization Tool

® Execute B in T; only after A executed in T,
©® Use semaphore flag initialized to 0

® Code:
T T
A walit(flag)
signal(flag) B

24

Two Types of Semaphores

® Counting semaphore

@ integer value can range over an unrestricted
domain.

® Binary semaphore
@ integer value can range only between 0 and 1;

@ can be simpler to implement.

® Counting semaphore S can be implemented
as a binary semaphore.

25

12



Deadlock and Starvation

©® Deadlock — two or more threads are waiting indefinitely for an event
that can be caused by only one of the waiting threads.

©® Let S and Q be two semaphores initialized to 1

T, T,
wait(S); wait(Q);
wait(Q); wait(S);

signal(S); signal(Q);
signal(Q) signal(S);

©® Starvation —indefinite blocking. A thread may never be removed
from the semaphore queue in which it is suspended.

® Solution - all code should acquire/release semaphores in same order

26

Windows Synchronization

©® Uses interrupt masks to protect access to global
resources on uniprocessor systems.

©® Uses spinlocks on multiprocessor systems.

©® Provides dispatcher objects which may act as mutexes
and semaphores.

© Dispatcher objects may also provide events. An event
acts much like a condition variable.

27

13



Linux Synchronization

6 Kernel disables interrupts for synchronizing access to
global data on uniprocessor systems.

® Uses spinlocks for multiprocessor synchronization.

©® Uses semaphores and readers-writers locks when
longer sections of code need access to data.

©® Implements POSIX synchronization primitives to support
multitasking, multithreading (including real-time threads),
and multiprocessing.

28

Further Reading

® Ben-Ari, M., Principles of Concurrent Programming,
Prentice Hall, 1982

©® Lamport, L., The Mutual Exclusion Problem, Journal of
the ACM, April 1986

©® Abraham Silberschatz, Peter B. Galvin, Operating
System Concepts, John Wiley & Sons, 6th Ed., 2003;

©® Chapter 7 - Process Synchronization
@ Chapter 8 - Deadlocks

29

14



