
XML in the Development of
Component Systems

Document Types

Purpose

Document Type Definitions define a vocabulary
– set of allowed element names
– set of attributes per element name

• data type given for each attribute

– content model: elements and data allowed inside the content
of the element

Validation: checking the conformance of a document
Association of semantics: explanation of the meaning of
each element, for a certain kind of processing

Things not specified

root element of the document
– Some DTDs (e.g. DocBook) are used with different

root elements (e.g. book, article)
number of instances of each element
structure of the character data
semantics of each element
– specified in natural language; e.g. DocBook gives

“processing expectations”

An Example

<!ELEMENT person (name, profession*)>
<!ELEMENT name (first_name, last_name)>
<!ELEMENT first_name (#PCDATA)>
<!ELEMENT last_name (#PCDATA)>
<!ELEMENT profession (#PCDATA)>

DTD Usage Example

<?xml version=“1.0” standalone=“no” ?>
<!DOCTYPE person SYSTEM

“http://cafeconleche.org/dtds/person.dtd”>
<person>
<name>

<first_name>Alan</first_name>
<last_name>Turing</last_name>

</name>
<profession>computer scientist</profession>
<profession>mathematician</profession>

</persons>

Document Identifier

SYSTEM: meaningful only on the local system
– XML: must be URI Reference (RFC2732)

• no fragment identifier
• relative identifiers are relative to the location of the original resource

PUBLIC: intended to be meaningful across systems
– inherited from SGML
– located on the local system by means of catalogs
– FPI: Formal Public Identifier

Formal Public Identifier

Syntax: prefix//owner-identifier//text-class text-
description//language//display version
prefix: + (registered), – (unregistered), ISO (reserved to ISO)
owner-identifier: organization issuing FPI
– IDN allows to use domain names

text-class: DOCUMENT, DTD, ELEMENTS, ENTITIES,
NONSGML, NOTATION, …
text-description: free form text
language: ISO code
display version (optional): distinguishes different forms

FPI Examples

-//OASIS//DTD DocBook V3.1//EN
-//W3C//DTD XHTML 1.0 Strict//EN
-//W3C//ENTITIES Latin 1 for XHTML//EN
ISO 646//NOTATION IS 646-IRV//EN
+//IDN python.org//DTD XML Bookmark Exchange Language

1.0//EN//XML

Internal DTD Subset

<?xml version=“1.0”?>
<!DOCTYPE person [
<!ELEMENT person (name, profession*)>
<!ELEMENT name (first_name, last_name)>
<!ELEMENT first_name (#PCDATA)>
<!ELEMENT last_name (#PCDATA)>
<!ELEMENT profession (#PCDATA)>
]>
<person>
<name><first_name>Alan</first_name><last_name>Turing</last_name></name>
</person>

DTD Subsets

external subset specified through system or
public identifier
internal subset included in document
must not have overlapping element definitions
internal subset occurs before external subset, so
internal definitions of entities and attribute lists
take precedence

Validation

Process of checking all validity constraints
validating processor must read external DTD
subset
– non-validating processor may still read external

subset, to find entity definitions
access to external entities resolves either
through public identifier or system identifier, at
the processor’s (or application’s) choice

Element Specifications

[45] elementdecl ::= '<!ELEMENT' S
Name S contentspec S? '>'

VC: element names must be unique
[46] contentspec ::=

'EMPTY' | 'ANY' | Mixed | children
Elements with EMPTY content model are valid if they
have no content
– for interoperability, empty-element tag should be used iff

content model is EMPTY
Elements with ANY content model are valid if all child
elements have been declared

Element Content

[47] children ::= (choice | seq) ('?' | '*' | '+')?
[48] cp ::= (Name | choice | seq) ('?' | '*' | '+')?
[49] choice ::= '(' S? cp (S? '|' S? cp)+ S? ')'
[50] seq ::= '(' S? cp (S? ',' S? cp)* S? ')'

content is valid if it is possible to trace through the content
model, following choices and sequences appropriately
– for compatibility, the content model must be deterministic

space (S) is allowed around child elements

Mixed Content

[51] Mixed ::= '(' S? '#PCDATA'
(S? '|' S? Name)* S? ')*'

| '(' S? '#PCDATA' S? ')'
Names of child nodes, unordered
VC: element names must not appear twice

Attribute Declarations

<!ATTLIST image1 source CDATA #REQUIRED>
<!ATTLIST image2 source CDATA #REQUIRED

width CDATA #REQUIRED
height CDATA #REQUIRED
alt CDATA #IMPLIED>

Attribute List Syntax

[52] AttlistDecl ::= '<!ATTLIST' S Name AttDef* S? '>'
[53] AttDef ::= S Name S AttType S DefaultDecl

multiple AttlistDecl for the same Name are merged
for multiple declarations of the same attribute, only the first
declaration is binding

Attribute Types

Three kinds of types: strings, tokenized lists, and
enumerations

[54] AttType ::= StringType | TokenizedType | EnumeratedType

Character Data Attributes

[55] StringType ::= 'CDATA'
contains arbitrary text
references are expanded; otherwise, data is
uninterpreted
default type for a non-validating parser

Tokenized Attributes

[56] TokenizedType ::= 'ID'
| 'IDREF'
| 'IDREFS'
| 'ENTITY'
| 'ENTITIES'
| 'NMTOKEN'
| 'NMTOKENS'

ID

Unique identification of elements within a document
VC: Must match Name production;
in a document, all values of this type must be unique

VC: At most one ID attribute per element type
VC: Default value must be #REQUIRED or #IMPLIED

<!ATTLIST employee social_security_number ID #REQUIRED>

<employee social_security_number=“_078-05-1120”>…

IDREF

refers to elements with an ID
VC: there must be an attribute of type ID with the same
value

<!ATTLIST team_member person IDREF #REQUIRED>

<team_member person=“_078-05-1120”>

IDREFS

List of multiple IDs, space separated
VC: must match production Names; individual
names must be ID values

ENTITY/ENTITIES

Refers to unparsed entities (not yet discussed)
VC: Value must match Name production; must
refer to unparsed entity declaration
ENTITIES: likewise list of unparsed entity names

NMTOKEN(S)

VC: value must match production Nmtoken(s)
used to constrain attributes to “identifier-like” things:
– allows “.cshrc”, “March”, “2003”
– disallows “March 2003”, “Sally had a lamb”

Enumerated Attributes

[57] EnumeratedType ::= NotationType | Enumeration
[58] NotationType ::= 'NOTATION' S '(' S? Name (S? '|' S? Name)* S? ')‘

VC: Names must be notation names; attribute values must match one of the
names (examples given later)
VC: Each element must have at most one attribute of notation type
VC: For compatibility, empty elements must not have notation attributes

[59] Enumeration ::= '(' S? Nmtoken (S? '|' S? Nmtoken)* S? ')‘
VC: attribute values must match one of the Nmtokens

<!ATTLIST date month (Jan|Feb|Mar|Apr|May|Jun|Jul|Aug|Sep|Oct|Nov|Dec>
<!ELEMENT date empty>
<date day=“20” month=“Oct” year=“2003”/>

Attribute Defaults

[60] DefaultDecl ::= '#REQUIRED' | '#IMPLIED'
| (('#FIXED' S)? AttValue)

VC: #REQUIRED attributes must be specified on all elements
WFC: AttValue must not contain ‘<‘
VC: AttValue must be follow lexical constraints of the attribute type
VC: values of #FIXED attributes must match the AttValue

<!ATTLIST termdef
id ID #REQUIRED
name CDATA #IMPLIED>

<!ATTLIST list
type (bullets|ordered|glossary) "ordered">

<!ATTLIST form
method CDATA #FIXED "POST">

Attribute Value Normalization

1. Line breaks are normalized to #xA
2. For each character/reference,

1. replace character references with referenced characters
2. replace entity references recursively with replacement text
3. replace white space (#x20, #xD, #xA, #X9) with a space

character

3. For non-CDATA attributes, remove leading and
trailing space, and replace sequences of space with a
single #x20

General Entities

Text replacement mechanism
Predefined: gt, lt, amp, quot, apos
User-defined: Using entity declarations

<!ENTITY super “supercalifragilisticexpialidocious”>
…
&super;

Replacement text can contain further markup (elements and
references)
Can be internal to the DTD, or external

<!ENTITY footer SYSTEM
“http://www.oreilly.com/boilerplate/footer.xml”>

Entity Declarations

[70] EntityDecl ::= GEDecl | PEDecl
[71] GEDecl ::= '<!ENTITY' S Name S EntityDef S? '>'
[72] PEDecl ::= '<!ENTITY' S '%' S Name S PEDef S? '>'
[73] EntityDef ::= EntityValue | (ExternalID NDataDecl?)
[74] PEDef ::= EntityValue | ExternalID

General entities: usable anywhere inside character data for replacement text
Parameter entities: usable only in DTD, to allow parameterization of DTD
General entities are either parsed or unparsed (NDATA)

Internal Entities

Defined through EntityValue
[9] EntityValue ::= '"' ([^%&"] | PEReference | Reference)* '"'

| "'" ([^%&'] | PEReference | Reference)* "'“

Internal entities are always parsed

External Entities

[75] ExternalID ::= 'SYSTEM' S SystemLiteral
| 'PUBLIC' S PubidLiteral S SystemLiteral

[76] NDataDecl ::= S 'NDATA' S Name
Parser may use SystemLiteral to obtain alternative URI
Otherwise, SystemLiteral must be used to retrieve resource
– SystemLiteral is encoded as UTF-8, non-ASCII characters are escaped

using %HH
– non-validating parser may refuse resource download, and report the

reference instead (providing declaration details if available)

Presence of NDataDecl indicates unparsed entity
VC: Name in NDataDecl must be a declared notation

Parsed Entities

Must be well-formed, i.e. match production
extParsedEnt

[78] extParsedEnt ::= TextDecl? content
TextDecl (<?xml …?>) must be used to denote non-
UTF-8 entities
Production content guarantees that markup cannot split
across replacement texts, and that start-tag and end-tag
must be balanced

Unparsed Entities and Notations

<!NOTATION gif SYSTEM “image/gif”>
<!NOTATION jpeg SYSTEM “image/jpeg”>
<!NOTATION png SYSTEM “image/png”>
<!ENTITY turing_getting_off_bus

SYSTEM “http://www.turing.org.uk/turing/pi1/bus.jpg”
NDATA jpg>

usage of unparsed entity references only in attributes of type entity
<!ELEMENT image EMPTY>
<!ATTLIST image source ENTITY #REQUIRED>
…
<image source=“turing_getting_off_bus”>

no further processing of entity by parser; application must interpret notation
and download the resource

Notation Syntax

[82] NotationDecl ::= '<!NOTATION' S Name S (ExternalID | PublicID) S? '>‘
[83] PublicID ::= 'PUBLIC' S PubidLiteral

XML processor must pass notation name and identifiers to the application
– optionally, processor may resolve public id into system identifier indicating

processor for the application

VC: Notation names must be unique within the document

Further Notation Usage

Processing Instruction Targets
<!NOTATION tex “/usr/local/bin/tex”>

Notation attributes
<!ATTLIST image type NOTATION (gif | jpeg | png)>

Parameter Entities

Macro replacement mechanism in DTDs
allows multiple usage of the same content model
also allows parametrization, by means of conditional inclusion

PE Example (XHTML)

<!ENTITY % coreattrs
"id ID #IMPLIED
class CDATA #IMPLIED
style %StyleSheet; #IMPLIED
title %Text; #IMPLIED"
>

<!ENTITY % attrs "%coreattrs; %i18n; %events;">
<!ENTITY % Block "(%block; | form | %misc;)*">
<!ELEMENT body %Block;>
<!ATTLIST body
%attrs;
onload %Script; #IMPLIED
onunload %Script; #IMPLIED
>

PE Syntax

[72] PEDecl ::= '<!ENTITY' S '%' S Name S PEDef S? '>'
[74] PEDef ::= EntityValue | ExternalID
[69] PEReference ::= '%' Name ';'

External PEs: recursively downloaded in validating processor; allow modular
definition of DTD

<!ENTITY % HTMLlat1 PUBLIC
"-//W3C//ENTITIES Latin 1 for XHTML//EN"
"xhtml-lat1.ent">

%HTMLlat1;
VC: entity in PEReference must be declared
WFC: PEDefs must not be recursive, and must occur only in DTDs

Parameterization

Redeclaration of PEs in internal subset
– first declaration is binding
– can be used to add or remove attributes from

attribute lists, or change the content model, if the
DTD allows it

In addition, conditional inclusion allows omitting
parts of the DTD

Conditional Inclusion

INCLUDE vs. IGNORE
<![IGNORE[
<!ELEMENT production_node (#PCDATA)>

]]>
<![INCLUDE[
<!ELEMENT production_node (#PCDATA)>

]]>
Conditional inclusion: define PE that expands to either INCLUDE or IGNORE

<!ENTITY % notes_allowed “INCLUDE”>
<![%notes_allowed[
<!ELEMENT production_node (#PCDATA)>

]]>

Comparison with SGML

More Keywords (beyond DOCTYPE, ELEMENT, ATTLIST,
NOTATION):
– SHORTREF, USEMAP as a macro mechanism

Optional markup minimization
– can omit either start tag or end tag (need to declare minimizable tags in

DTD)
– Can minimize end tags to </>
– Can omit semicolons
– Can omit quotes/apostrophes in attribute values
– Can omit attribute names

More attribute types (NUMBER(S), NUTOKEN(s))

