
1

Security and the
.NET Framework

Code Access Security
� Enforces security policy on code

� Regardless of user running the code
� Regardless of whether the code is in the same

application with other code
� Other code can be more, less, or equally privileged

�When code attempts a restricted action the system
throws a SecurityException

� Code Access Security is the cornerstone of
security on the Framework

� Much of the Framework infrastructure is
necessary for CAS to work
�Managed heap, JIT compilation, Assemblies, etc.

2

The Idea Behind CAS
� Assembly == Code in Code Access Security

� Unit of versioning, deployment and execution
� Assembly is also a unit of security
� All code in a single assembly share the same permissions

� Applications are always comprised of code from multiple
assemblies
� The .exe assembly
� Assemblies in the Framework Class Library
� Custom libraries, mobile code, etc.

� When a thread crosses an assembly boundary, it also
crosses a security boundary

� Before a sensitive action is performed, the CLR walks up
the call-stack
� Assures each assembly in the stack-walk has necessary

permissions
� This stack-walk is called a Demand

Demand
� Demand must be satisfied by all callers

� Ensures all code in causal chain is authorized
� Code cannot exploit other code with more privilege

Code B

Code C

Code A

Method

Call

Method

Call
Code C

Initiates a

Demand

Code B Has

Permission?

Code A Has

Permission?

3

CAS in Action: A First Look

� Creates StreamReader object
� StreamReader reads file internally access file
� Potentially protected resources

using System;

using System.IO;

using System.Security;

class App{

public static void Main(string[] args){

StreamReader reader = new StreamReader(args[0]);

Console.WriteLine(reader.ReadToEnd());

}

}

Rational for CAS
� No longer is all code running in a single user

session awarded the same rights
� Example: User launches a word-processor and it has

access to the file system
� The word-processor loads and runs a script downloaded from

a network/Internet -- the script’s file system access is limited

� In this example all code is running natively in the
same system process

� Increase granularity of security
� User-logon no longer the smallest unit of security
� User does not want to switch logon sessions simply to

run partially trusted code

4

Important Scenarios

� Mobile Code
�Browser-hosted forms, network installs,

distributed applications

�Network scripts run locally

�Email embedded macros and scripts

�Code downloaded and executed locally

� ISP Scenario
� ISP sells web-hosting to many parties

�Web code executes natively on ISP machines

�Code does not require security review

Scenario #1: Mobile Code
� Advantages of mobile code

� Executes locally for performance and rich features
� Not restricted to the limitations of markup or scripts

� Rich features like animations and drag-and-drop

� Why Code Access Security is necessary
�Without managed code and CAS mobile code must

be scripted or fully trusted
� Scripted code is slow, limited features
� Fully trusted code (ActiveX)

� Bothers users with dialog boxes requesting trust
� Once established, full trust can be exploited by rogue web-sites

� CAS enables partial trust of mobile code
� No dialogs, less exploitable
� Rich access to GUI API, high performance
� Best of both worlds

5

Scenario #2: ISP Scenario
� Advantages of active server code (CGI, ISAPI, ASP.NET)

� High performance (improved features/speed over scripted solutions)
� Dynamic generation of HTML (not restricted to static content)

� With unmanaged code active servers are fully trusted by host (ISP)
� CGI .exe’s or ISAPI DLL’s have full access to the system or process
� One site can undermine the functions of another site

� Maliciously, or through code error
� Potentially the whole server can be undermined

� Security management at the process level is problematic
� Difficult to administer
� Doesn’t perform well with a minimum of one process per site

� Result: ISP’s disallow active server code
� CAS enables partial trust

� ASP.NET page can run in proc with other sites
� Page object for one sight cannot gain access to objects or resources of

other sites
� System resources are not generally available

� ASP.NET applications can be given access to subsets of system resources
such as a directory or registry tree

Understanding Security Zones

� The system establishes a
zone for code (assembly)
� Happens before code is

executed
� Zones are based on the

source location of code
� Zones are a subset of an

advanced CAS feature
called evidence Code downloaded from the

Internet. Minimal access to
local resources.

Internet

Code in the restricted zone
is not allowed to execute.

Restricted

Code executed from a
share or URL on the
enterprise network. Limited
access to local resources.

Intranet

Code executed from the
local system. Code in this
zone has full trust.

Local

DescriptionZone

6

Practical Zones Programming
� Common .NET developer experience

� Create an application, test it, fix bugs, code works fine
� Developer then gives the app to someone who runs it from a network

share
� Application begins crashing inexplicably

� Reason: The Intranet zone has fewer permissions than the Local zone.

� Solution: Test your software in different zones

� Running managed software in different zones
� If your software is an .exe then it is sure to be run in at least two

zones
� Local and Intranet

� Your software should at least recover gracefully if a security
exception is thrown

� If your software is a reusable control, then it could feasibly be run
from any of the zones

Testing Zones
� You should test your software from the relevant

zones
� Run your software locally
� Run it from a share
� Run it from a URL on the internet

� Your software will almost certainly throw some
exceptions when first tested in a more restricted
zone
� Handle the exceptions and gracefully shut down
� Handle the exceptions and work around with restricted

features
� Don’t just let security exceptions crash your software!

7

Demo Pad.exe

zoner Pad.exe zoner /z:MyComputer Pad.exe caspol -rsp Pad.exe

Permissions

� Permissions are objects that the CLR references when
performing a demand

� Permissions are granted to your assembly based on its
zone (in addition to other assembly evidence)

� Permission objects themselves play an integral role in
the demand process
� The Demand() method calls virtual functions on the permission

object when checking for a match
� This involvement at the permission level makes the kinds of

available permissions very flexible

� It is possible to design custom permissions for your code
libraries
� More on this in the advanced CAS session

8

Some Frameworks Permissions

� FileIOPermission

� FileDialogPermission

� IsolatedStoragePermission

� UIPermission

� PrintingPermission

� WebPermission

� SocketPermission

� These are Just examples, the FCL defines
many permissions

Your Assembly is Loaded
� The system gathers evidence for your assembly

� Digital signatures, Realm information
� Zone information

� From evidence, your assembly is assigned one
or more code groups

� Code groups define the permission sets to apply
to your assembly
� Permission sets are collections of permissions

� Once loaded, the system has a permission grant
associated with your assembly

9

Your Assembly’s Code Executes
� Your code executes, and uses reusable objects

� FCL, custom objects, etc

� Eventually, a method or constructor of an object
will demand a security permission
� Each assembly in call stack is checked for permission
� If the demand reaches your assembly, your

assembly’s grant is checked for permission
� If you have it, the demand continues up the stack
� If you do not have the permission in your grant, a

SecurityException is thrown

� If the demand reaches the top of the stack, the
demand has succeeded
� The restricted action is performed

CAS Applies to All Assemblies
� All assemblies get a grant upon loading
� All assemblies’ grants are checked upon

demand
� CAS is always aware of who initiates an

action

10

Rational for CAS: Summary
� Managed code makes CAS possible

� Unmanaged code, impossible to implement CAS

� CAS enables local execution of code
� Safe, even if code is not trusted
�Opens the door to rich features
� Removes the need for rigid code review

� Third party code
� Your software must still be reviewed for security

� CAS permissions based on
� Code authentication
� Call stack

Security and the
.NET Framework

11

The slides following this one contain the figure
graphics for the tutorial that goes with this

presentation.

Code B

Code C

Code A

Method

Call

Method

Call
Code C

Initiates a

Demand

Code B Has

Permission?

Code A Has

Permission?

Code == Assembly

