
11-203:
COM Fundamentals - Part 1 Page 1

Fundamentals
Of COM(+)
(Part 1)

Don Box
Cofounder
DevelopMentor
http://www.develop.com/dbox

11-203

COM – The Idea

� COM is based on three fundamental ideas
� Clients program in terms of interfaces,

not classes
� Implementation code is not statically linked,

but rather loaded on-demand at runtime
� Object implementors declare their runtime

requirements and the system ensures that
these requirements are met

� The former two are the core of classic COM
� The latter is the core of MTS and COM+

11-203:
COM Fundamentals - Part 1 Page 2

Tale Of Two COMs

� COM is used primarily for two tasks
� Task 1: Gluing together multiple components inside

a process
� Class loading, type information, etc

� Task 2: Inter-process/Inter-host communications
� Object-based Remote Procedure Calls (ORPC)

� Pros: Same programming model and APIs used for
both tasks

� Cons: Same programming model and APIs used for
both tasks

� Design around the task at hand

Motivation

� We want to build dynamically composable systems
� Not all parts of application are statically linked

� We want to minimize coupling within the system
� One change propagates to entire source code tree

� We want plug-and-play replaceablity and
extensibility
� New pieces should be indistinguishable from old,

known parts

� We want freedom from file/path dependencies
� xcopy /s *.dll C:\winnt\system32 not a solution

� We want components with different runtime
requirements to live peaceably together
� Need to mix heterogeneous objects in a single process

11-203:
COM Fundamentals - Part 1 Page 3

A Solution – Components

� Circa-1980’s style object-orientation based on
classes and objects
� Classes used for object implementation
� Classes also used for consumer/client type hierarchy

� Using class-based OO introduces non-trivial
coupling between client and object
� Client assumes complete knowledge of public interface
� Client may know even more under certain languages

(e.g., C++)

� Circa-1990’s object orientation separates client-
visible type system from object-visible
implementation
� Allows client to program in terms of abstract types
� When done properly, completely hides implementation

class from client

// faststring.h – seen by client and object implementor

class FastString {

char *m_psz;

public:

FastString(const char *psz);

~FastString();

int Length() const;

int Find(const char *pszSearchString) const;

};

// faststring.cpp – seen by object implementor only

FastString::FastString(const char *psz)

: : :

Recall: Class-Based oo

� The object implementor defines a class that…
� Is used to produce new objects
� Is used by the client to instantiate and invoke methods

11-203:
COM Fundamentals - Part 1 Page 4

Recall: Class-Based oo

� Client expected to import full definition of class
� Includes complete public signature at time of compilation
� Also includes size/offset information under C++

// client.cpp

// import type definitions to use object

#include “faststring.h”

int FindTheOffset() {

int i = -1;

FastString *pfs = new FastString(“Hello, World!”);

if (pfs) {

i = pfs->Find(“o, W”);

delete pfs;

}

return i;

}

Class-Based OO Pitfalls

� Classes not so bad when the world is statically linked
� Changes to class and client happen simultaneously
� Problematic if existing public interface changes…

� Most environments do a poor job at distinguishing
changes to public interface from private details
� Touching private members usually triggers cascading rebuild

� Static linking has many drawbacks
� Code size bigger
� Can’t replace class code independently

� Open Question: Can classes be dynamically linked?

11-203:
COM Fundamentals - Part 1 Page 5

// faststring.h

class __declspec(dllexport) FastString {

char *m_psz;

public:

FastString(const char *psz);

~FastString();

int Length() const;

int Find(const char *pszSearchString) const;

};

Classes Versus Dynamic Linking

� Most compilers offer a compiler keyword or
directive to export all class members from DLL
� Results in mechanical change at build/run-time
� Requires zero change to source code (except introducing

the directive)

Classes Versus Dynamic Linking

Client A
� Clients statically link to

import library
� Maps symbolic name to DLL

and entry name

� Client imports resolved at
load time

� Note: C++ compilers non-
standard wrt DLLs
� DLL and clients must be built

using same compiler/linker

Client B

Client C

faststring.dll

import name file name export name

??@3fFastString_6Length
??@3fFastString_4Find
??@3fFastString_ctor@sz2
??@3fFastString_dtor

faststring.dll
faststring.dll
faststring.dll
faststring.dll

??@3fFastString_6Length
??@3fFastString_4Find
??@3fFastString_ctor@sz2
??@3fFastString_dtor

faststring.lib

11-203:

COM Fundamentals - Part 1 Page 6

// faststring.h

class FastString {

char *m_psz;

public:

FastString(const char *psz);

~FastString();

int Length() const;

int Find(const char *pszSearchString) const;

};

// faststring.cpp

#include “faststring.h”

#include <string.h>

int FastString::Length() const {

return strlen(m_psz);

}

Classes Versus Dynamic
Linking: Evolution
� Challenge: Improve the performance of Length!

� Do not change public
interface and break
encapsulation

class __declspec(dllexport) FastString

{

char *m_psz;

int m_cch;

public:

FastString(const char *psz);

~FastString();

int Length() const;

int Find(const char *pszSS) const;

};

FastString::FastString(const char *sz)

: m_psz(new char[strlen(sz)+1]),

m_cch(strlen(sz)) {

strcpy(m_psz, sz);

}

int FastString::Length() const {

return m_cch;

}

Classes Versus Dynamic
Linking: Evolution
� Solution: Speed up FastString::Length by caching

length as data member

11-203:
COM Fundamentals - Part 1 Page 7

Client A

Client B

Client C

faststring.dll

sizeof==8

sizeof==8sizeof==4

sizeof==4

Classes Versus Dynamic
Linking: Evolution
� New DLL assumes

sizeof(FastString) is 8
� Existing Clients assume

sizeof(FastString) is 4
� Clients that want new

functionality recompile
� Old Clients break!
� This is an inherent

limitation of virtually all
C++ environments

Client A

(v2)

faststring.dll

(v1)

FastString::FastString

FastString::~FastString

FastString::Length

FastString::Find

FastString::FastString

FastString::~FastString

FastString::Length

FastString::Find

FastString::FindN

Classes Versus Dynamic
Linking: Interface Evolution
� Adding new public methods OK when statically linked

� Class and client code inseparable

� Adding public methods to a DLL-based class dangerous!
� New client expects method to be there
� Old DLLs have never heard of this method!!

11-203:
COM Fundamentals - Part 1 Page 8

Conclusions

� Cannot change definition of a data
type without massive
rebuild/redeployment of client/object

� If clients program in terms of classes,
then classes cannot change in any
meaningful way

� Classes must change because we
can’t get it right the first time

� Solution: Clients must not program
in terms of classes

Interface-Based
Programming
� Key to solving the replaceable component problem is

to split the world into two
� The types the client programs against can never

change
� Since classes need to change, these better not be classes!

� Solution based on defining alternative type system
based on abstract types called interfaces

� Allowing client to only see interfaces insulates clients
from changes to underlying class hierarchy

� Most common C++ technique for bridging interfaces
and classes is to use abstract base
classes as interfaces

11-203:
COM Fundamentals - Part 1 Page 9

Abstract Bases As
Interfaces
� A class can be designated as abstract by making

(at least) one method pure virtual
struct IFastString {
virtual int Length() const = 0;
virtual int Find(const char *) const = 0;

};

� Cannot instantiate abstract base
� Can declare pointers or references to abstract bases

� Must instead derive concrete type that implements
each pure virtual function

� Classes with only pure virtual functions (no data
members, no implementation code) often called
pure abstract bases, protocol classes or interfaces

Interfaces And
Implementations
� Given an abstract interface, the most common way

to associate an implementation with it is
through inheritance

� Class FastString : public IFastString {...};

� Implementation type must provide concrete
implementations of each interface method

� Some mechanism needed to create instances of the
implementation type without exposing layout
� Usually takes the form of a creator or factory function

� Must provide client with a way to delete object
� Since the new operator is not used by the client, it cannot

call the delete operator

11-203:
COM Fundamentals - Part 1 Page 10

Exporting Via Abstract Bases

// faststringclient.h – common header between client/class

// here’s the DLL-friendly abstract interface:

struct IFastString {

virtual void Delete() = 0;

virtual int Length() const = 0;

virtual int Find(const char *sz) const = 0;

};

// and here’s the DLL-friendly factory function:

extern “C” bool

CreateInstance(const char *pszClassName, // which class?

const char *psz, // ctor args

IFastString **ppfs); // the objref

Exporting Via Abstract Bases
// faststring.h – private source file of class

#include “faststringclient.h”

class FastString : public IFastString {

// normal prototype of FastString class + Delete

void Delete() { delete this; }

};

// component.cpp – private source file for entire DLL

#include “faststring.h” // import FastString

#include “fasterstring.h” // import FasterString (another class)

bool CreateInstance(const char *pszClassName,

const char *psz, IFastString **ppfs) {

*ppfs = 0;

if (strcmp(pszClassName, “FastString”) == 0)

ppfs = static_cast<IFastString>(new FastString(sz));

else if (strcmp(pszClassName, “FasterString”) == 0)

ppfs = static_cast<IFastString>(new FasterString(sz));

return *ppfs != 0;

}

11-203:
COM Fundamentals - Part 1 Page 11

m_text

m_length

vptr FastString::Delete

FastString::Length

FastString::Find

pfs

Client Object

Exporting Using
Abstract Bases

bool LoadAndCreate(const char *szDLL, const char *sz,

IFastString **ppfs){

HINSTANCE h = LoadLibrary(szDLL);

bool (*fp)(const char*, const char*, IFastString**);

((FARPROC)&fp) = GetProcAddress(h, “CreateInstance”);

return fp(“FastString”, sz, ppfs);

}

Interfaces And
Plug-compatibility
� Note that a particular DLL can supply multiple implementations

of same interface
� CreateInstance(“SlowString”, “Hello!!”, &pfs);

� Due to simplicity of model, runtime selection of
implementation trivial
� Explicitly load DLL and bind function address

11-203:
COM Fundamentals - Part 1 Page 12

Interfaces And Evolution

� Previous slides alluded to interface remaining
constant across versions

� Interface-based development mandates that new
functionality be exposed using additional interface
� Extended functionality provided by deriving from

existing interface
� Orthogonal functionality provided by creating new

sibling interface

� Some technique needed for dynamically
interrogating an object for interface support
� Most languages support some sort of runtime cast

operation (e.g., C++’s dynamic_cast)

// faststringclient.h

struct IFastNFind : public IFastString {

virtual int FindN(const char *sz, int n) const = 0;

};
// faststringclient.cxx

int Find10thInstanceOfFoo(IFastString *pfs) {

IFastNFind *pfnf = 0;

if (pfnf = dynamic_cast<IFastNFind *>(pfs)) {

return pfnf->FindN(“Foo”, 10);

}

else

// implement by hand...

}

Example: Adding
Extended Functionality
� Add method to find the nth instance of sz

11-203:
COM Fundamentals - Part 1 Page 13

m_text

m_length

vptr

FastString::Delete

FastString::Length

FastString::Find

pfs

Client Object

pfnf
FastString::FindN

Example: Adding
Extended Functionality

// faststringclient.h

struct IPersistentObject {

virtual void Delete(void) = 0;

virtual bool Load(const char *sz) = 0;

virtual bool Save(const char *sz) const = 0;

};

// faststringclient.cxx

bool SaveString(IFastString *pfs) {

IPersistentObject *ppo = 0;

if (ppo = dynamic_cast<IPersistentObject*>(pfs)) {

return ppo->Save(“Autoexec.bat”);

}

else

return false; // cannot save...

}

Example: Adding
Orthogonal Functionality
� Add support for generic persistence

11-203:
COM Fundamentals - Part 1 Page 14

m_text

m_length

vptr

FastString::Delete

FastString::Length

FastString::Find

pfs

Client Object

vptr

FastString::Delete

FastString::Load

ppo

FastString::Save

Example: Adding
Orthogonal Functionality

Fixing Interface-Based
Programming In C++
� The dynamic_cast operator has several problems

that must be addressed
� 1) Its implementation is non-standard across compilers
� 2) There is no standard runtime representation

for the typename
� 3) Two parties may choose colliding typenames

� Can solve #1 by adding yet another well-known
abstract method to each interface (a la Delete)

� #2 and #3 solved by using a well-known
namespace/type format for identifying interfaces
� UUIDs from OSF DCE are compact (128 bit), efficient and

guarantee uniqueness
� UUIDs are basically big, unique integers!

11-203:
COM Fundamentals - Part 1 Page 15

QueryInterface

� COM programmers use the well-known abstract
method (QueryInterface) in lieu of dynamic_cast

virtual HRESULT _stdcall
QueryInterface(REFIID riid,// the requested UUID
void **ppv // the resultant objref
) = 0;

� Returns status code indicating success (S_OK) or
failure (E_NOINTERFACE)

� UUID is integral part of interface definition
� Defined as a variable with IID_ prefixed to type name
� VC-specific __declspec(uuid) conjoins COM/C++ names

void UseAsTelephone(ICalculator *pCalc) {

ITelephone *pPhone = 0;

pPhone = dynamic_cast<ITelephone*>(pCalc);

if (pPhone) {

// use pPhone

: : :

void UseAsTelephone(ICalculator *pCalc) {

ITelephone *pPhone = 0;

HRESULT hr = pCalc->QueryInterface(IID_ITelephone,

(void**)&pPhone);

if (hr == S_OK) {

// use pPhone

: : :

QueryInterface As A Better
Dynamic Cast

11-203:
COM Fundamentals - Part 1 Page 16

ICalculator *pCalc1 = CreateCalc();

ITelephone *pPhone1 = CreatePhone();

ICalculator *pCalc2 = dynamic_cast<ICalculator*>(pPhone1);

ICalculator *pCalc3 = CreateCalc();

pPhone1->Dial(pCalc1->Add(pCalc2->Add(pCalc3->Add(2))));

pCalc1->Delete(); // assume interfaces have Delete

pCalc2->Delete(); // per earlier discussion

pPhone1->Delete();

Fixing Interface-Based
Programming In C++
� Previous examples used a “Delete” method to allow

client to destroy object
� Requires client to remember which references point to

which objects to ensure each object deleted exactly once

Fixing Interface-Based
Programming In C++
� COM solves the “Delete” problem with

reference counting
� Clients blindly “Delete” each reference, not each object

� Objects can track number of extant references and
auto-delete when count reaches zero
� Requires 100% compliance with ref. counting rules

� All operations that return interface pointers must
increment the interface pointer’s reference count
� QueryInterface, CreateInstance, etc.

� Clients must inform object that a particular interface
pointer has been destroyed using well-known method
� Virtual ULONG _stdcall Release() = 0;

11-203:
COM Fundamentals - Part 1 Page 17

ICalculator *pCalc1 = CreateCalc();

ITelephone *pPhone1 = CreatePhone();

ICalculator *pCalc2 = 0;

ICalculator *pCalc3 = CreateCalc();

ITelephone *pPhone2 = 0;

ICalculator *pCalc4 = 0;

pPhone1->QueryInterface(IID_ICalculator,(void**)&pCalc2);

pCalc3->QueryInterface(IID_ITelephone,(void**)&pPhone2);

pCalc1->QueryInterface(IID_ICalculator, (void**)&pCalc4);

pPhone1->Dial(pCalc1->Add(pCalc2->Add(pCalc3->Add(2))));

pCalc1->Release(); pCalc4->Release();

pCalc2->Release(); pPhone1->Release();

pCalc3->Release(); pPhone2->Release();

Reference Counting Basics

extern const IID IID_IUnknown;

struct IUnknown {

virtual HRESULT STDMETHODCALLTYPE QueryInterface(

const IID& riid, void **ppv) = 0;

virtual ULONG STDMETHODCALLTYPE AddRef() = 0;

virtual ULONG STDMETHODCALLTYPE Release() = 0;

};

IUnknown

� The three core abstract operations (QueryInterface,
AddRef, and Release) comprise the core interface
of COM, IUnknown

� All COM interfaces must extend IUnknown
� All COM objects must implement IUnknown

11-203:
COM Fundamentals - Part 1 Page 18

Com Interfaces In Nature

� Represented as pure abstract base
classes in C++
� All methods are pure virtual
� Never any code, only signature
� Format of C++ vtable/vptr defines expected stack frame

� Represented directly as interfaces in Java
� Represented as Non-Creatable classes in

Visual Basic
� Uniform binary representation independent of

how you built the object
� Identified uniquely by a 128-bit Interface ID (IID)

Com Interfaces In Nature

� COM interfaces are described first in
COM IDL

� COM IDL is an extension to DCE IDL
� Support for objects + various wire optimizations

� IDL compiler directly emits C/C++ interface
definitions as source code

� IDL compiler emits tokenized type library
containing (most) of original contents in an
easily parsed format

� Java™/Visual Basic® pick up mappings from
type library

11-203:
COM Fundamentals - Part 1 Page 19

Foo.idl
IDL

Description
of Foo interfaces

and datatypes

Foo.h
C/C++

Definitions

Foo_i.c
GUIDs

Foo_p.c
Proxy/Stub

dlldata.c
Class Loading

Support

Foo.tlb
Binary

Descriptions

MIDL.EXE *.java
Java

Definitions

JACTIVEX.EXE

COM IDL

COM IDL

� All elements in an IDL file can have attributes
� Appear in [] prior to subject of attributes

� Interfaces are defined at global scope
� Required by MIDL to emit networking code

� Must refer to exported types inside library block
� Required by MIDL to emit type library definition

� Can import std interface suite
� WTYPES.IDL - basic data types
� UNKNWN.IDL - core type interfaces
� OBJIDL.IDL - core infrastructure itfs
� OLEIDL.IDL - OLE itfs
� OAIDL.IDL - Automation itfs
� OCIDL.IDL - ActiveX Control itfs

11-203:
COM Fundamentals - Part 1 Page 20

[uuid(DEFACED1-0229-2552-1D11-ABBADABBAD00), object]

interface ICalculator : IDesktopDevice {

import “dd.idl”; // bring in IDesktopDevice

HRESULT Clear(void);

HRESULT Add([in] short n); // n sent to object

HRESULT GetSum([out] short *pn); // *pn sent to caller

}

[

uuid(DEFACED2-0229-2552-1D11-ABBADABBAD00),

helpstring(“My Datatypes”)

]

library CalcTypes {

importlib(“stdole32.tlb”); // required

interface ICalculator; // cause TLB inclusion
}

CalcTypes.idl

COM IDL

COM IDL - C++ Mapping
#include “dd.h”

extern const IID IID_ICalculator;

struct

__declspec(uuid(“DEFACED1-0229-2552-1D11-ABBADABBAD00”))
ICalculator : public IDesktopDevice {

virtual HRESULT STDMETHODCALLTYPE Clear(void) = 0;

virtual HRESULT STDMETHODCALLTYPE Add(short n) = 0;

virtual HRESULT STDMETHODCALLTYPE GetSum(short *pn) = 0;

};

extern const GUID LIBID_CalcTypes;

const IID IID_ICalculator = {0xDEFACED1, 0x0229, 0x2552,

{ 0x1D, 0x11, 0xAB, 0xBA, 0xDA, 0xBB, 0xAD, 0x00 } };

const GUID LIBID_CalcTypes = {0xDEFACED2, 0x0229, 0x2552,

{ 0x1D, 0x11, 0xAB, 0xBA, 0xDA, 0xBB, 0xAD, 0x00 } };

CalcTypes.h

CalcTypes_i.c

11-203:
COM Fundamentals - Part 1 Page 21

COM IDL – Java/VB Mapping

package CalcTypes; // library name

/**@com.interface(iid=DEFACED1-0229-2552-1D11-ABBADABBAD00)*/

interface ICalculator extends IDesktopDevice {

public void Clear();

public void Add(short n);

public void GetSum(short [] pn); // array of length 1

public static com.ms.com._Guid iid =

new com.ms.com._Guid(0xDEFACED1, 0x0229, 0x2552,

0x1D, 0x11, 0xAB, 0xBA,

0xDA, 0xBB, 0xAD, 0x00);

}

CalcTypes.java

Public Sub Clear()

Public Sub Add(ByVal n As Integer)

Public Sub GetSum(ByRef pn As Integer)

CalcTypes.cls

particular valueres

Severity (31) Facility (27-16) Code (15-0)

0 -> Success

1 -> Failure

FACILITY_NULL

FACILITY_ITF

FACILITY_STORAGE

FACILITY_DISPATCH

FACILITY_WINDOWS

FACILITY_RPC

COM And Error Handling

� COM (today) doesn’t support typed C++ or Java-
style exceptions

� All (remotable) methods must return a standard 32-
bit error code called an HRESULT
� Mapped to exception in higher-level languages
� Overloaded to indicate invocation errors from proxies

11-203:
COM Fundamentals - Part 1 Page 22

HRESULTs
� HRESULT names indicate severity and facility

� <FACILITY>_<SEVERITY>_<CODE>
� DISP_E_EXCEPTION
� STG_S_CONVERTED

� FACILITY_NULL codes are implicit
� <SEVERITY>_<CODE>
� S_OK
� S_FALSE
� E_FAIL
� E_NOTIMPL
� E_OUTOFMEMORY
� E_INVALIDARG
� E_UNEXPECTED

� Can use FormatMessage API to lookup human-readable
description at runtime

small

long

hyper

IDL C++ Java

short

char

long

__int64

byte

int

long

short short

Visual Basic

N/A

Long

N/A

Integer

unsigned small

unsigned long

unsigned hyper

unsigned short

unsigned char

unsigned long

unsigned __int64

byte

int

long

unsigned short short

Byte

N/A

N/A

N/A

float

double

float

double

float

double

Single

Double

char

unsigned char

char

unsigned char

char

byte

N/A

Byte

wchar_t wchar_t char Integer

Script

No

Yes

No

Yes

No

No

No

No

Yes

Yes

No

Yes

No

COM Data Types

11-203:
COM Fundamentals - Part 1 Page 23

byte

boolean

VARIANT_BOOL

IDL C++ Java

BYTE

unsigned char

long

VARIANT_BOOL

char

int

boolean

unsigned char byte

Visual Basic

N/A

Long

Boolean

Byte

BSTR

VARIANT

BSTR java.lang.String

VARIANT com.ms.com.Variant

String

Variant

CY long int Currency

DATE

enum

double double

enum int

Date

Enum

Typed ObjRef IFoo * interface IFoo IFoo

struct struct final class Type

union

C-style Array

union N/A

array array

N/A

N/A

Script

No

No

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

No

No

No

COM Data Types

struct MESSAGE { VARIANT_BOOL b; long n; };

[uuid(03C20B33-C942-11d1-926D-006008026FEA), object]

interface IAnsweringMachine : IUnknown {

HRESULT TakeAMessage([in] struct MESSAGE *pmsg);

[propput] HRESULT OutboundMessage([in] long msg);

[propget] HRESULT OutboundMessage([out, retval] long *p);

}

public final class MESSAGE {

public boolean b; public int n;

}

public interface IAnsweringMachine extends IUnknown

{

public void TakeAMessage(MESSAGE msg);

public void putOutboundMessage(int);

public int getOutboundMessage();

}

Example

11-203:
COM Fundamentals - Part 1 Page 24

Where Are We?

� Clients program in terms of abstract data
types called interfaces

� Clients can load method code dynamically
without concern for C++ compiler
incompatibilities

� Clients interrogate objects for extended
functionality via RTTI-like constructs

� Clients notify objects when references are
duplicated or destroyed

� Welcome to the Component Object Model!

References

� Programming Dist Apps With Visual Basic
and COM
� Ted Pattison, Microsoft Press

� Inside COM
� Dale Rogerson, Microsoft Press

� Essential COM(+), 2nd Edition (the book)
� Don Box, Addison Wesley Longman (4Q99)

� Essential COM(+) Short Course,
DevelopMentor
� http://www.develop.com

� DCOM Mailing List
� http://discuss.microsoft.com

11-203:
COM Fundamentals - Part 1 Page 25

